IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8931-d435677.html
   My bibliography  Save this article

Assessing Urban Resilience in Complex and Dynamic Systems: The RESCCUE Project Approach in Lisbon Research Site

Author

Listed:
  • João Barreiro

    (CERIS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Ruth Lopes

    (HIDRA, Hidráulica e Ambiente Lda., Av. Defensores de Chaves, n. 31–1º Esq., 1000-111 Lisboa, Portugal)

  • Filipa Ferreira

    (CERIS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Rita Brito

    (National Civil Engineering Laboratory, LNEC, Av. Brasil 101, 1700-066 Lisboa, Portugal)

  • Maria João Telhado

    (Lisbon City Council, Câmara Municipal de Lisboa, CML, Praça José Queirós, n. 1–3º piso–Fração 5, 1800-237 Lisboa, Portugal)

  • José Saldanha Matos

    (HIDRA, Hidráulica e Ambiente Lda., Av. Defensores de Chaves, n. 31–1º Esq., 1000-111 Lisboa, Portugal)

  • Rafaela Saldanha Matos

    (National Civil Engineering Laboratory, LNEC, Av. Brasil 101, 1700-066 Lisboa, Portugal)

Abstract

Urban environments are challenged with unprecedented anthropogenic and natural pressures, the latter being accelerated by the growing awareness of the consequences of climate change. The concept of urban resilience has been growing in response, since it allows us to understand city behaviour as a system of systems, improving its response to extreme climate-related events. This paper presents the EU H2020 Resilience to Cope with Climate Change in Urban Areas (RESCCUE) project approach in Lisbon’s research site, regarding the Hazur ® resilience assessment methodology. This methodology focuses on the interdependencies between services and infrastructures, and on the recovery times needed to restore its normal functionalities. This approach allows the integration of several work packages of the RESCCUE project, from climate change projections to adaptation strategies selection. The assessment was conducted for 19 services and 146 infrastructures, including water (supply and drainage systems), power, mobility, waste, telecommunication, environment, and the social sector. The principal climate-related hazard analysed at the Lisbon research site was urban flooding. The main result consists of a deep understanding of the relations between different services and the consequent cascade effects triggered by flooding events. Stakeholders’ involvement, beyond the project consortium, was fundamental for the success of the methodology implementation.

Suggested Citation

  • João Barreiro & Ruth Lopes & Filipa Ferreira & Rita Brito & Maria João Telhado & José Saldanha Matos & Rafaela Saldanha Matos, 2020. "Assessing Urban Resilience in Complex and Dynamic Systems: The RESCCUE Project Approach in Lisbon Research Site," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8931-:d:435677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Adriana Cardoso & Rita Salgado Brito & Cristina Pereira & Andoni Gonzalez & John Stevens & Maria João Telhado, 2020. "RAF Resilience Assessment Framework—A Tool to Support Cities’ Action Planning," Sustainability, MDPI, vol. 12(6), pages 1-64, March.
    2. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    3. Maria do Céu Almeida & Maria João Telhado & Marco Morais & João Barreiro & Ruth Lopes, 2020. "Urban Resilience to Flooding: Triangulation of Methods for Hazard Identification in Urban Areas," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyundong Nam & Taewoo Nam, 2021. "Exploring Strategic Directions of Pandemic Crisis Management: A Text Analysis of World Economic Forum COVID-19 Reports," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    2. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Adriana Cardoso & Maria João Telhado & Maria do Céu Almeida & Rita Salgado Brito & Cristina Pereira & João Barreiro & Marco Morais, 2020. "Following a Step by Step Development of a Resilience Action Plan," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    2. Marc Velasco & Beniamino Russo & Robert Monjo & César Paradinas & Slobodan Djordjević & Barry Evans & Eduardo Martínez-Gomariz & Maria Guerrero-Hidalga & Maria Adriana Cardoso & Rita Salgado Brito & D, 2020. "Increased Urban Resilience to Climate Change—Key Outputs from the RESCCUE Project," Sustainability, MDPI, vol. 12(23), pages 1-25, November.
    3. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Fatemeh Asghari & Farzad Piadeh & Daniel Egyir & Hossein Yousefi & Joseph P. Rizzuto & Luiza C. Campos & Kourosh Behzadian, 2023. "Resilience Assessment in Urban Water Infrastructure: A Critical Review of Approaches, Strategies and Applications," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    6. Ilalokhoin, Ohis & Pant, Raghav & Hall, Jim W., 2023. "A model and methodology for resilience assessment of interdependent rail networks – Case study of Great Britain's rail network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Guohua Chen & Qin Yang & Xuexi Chen & Kongxing Huang & Tao Zeng & Zhi Yuan, 2021. "Methodology of Urban Safety and Security Assessment Based on the Overall Risk Management Perspective," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    8. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    9. Sharma, Neetesh & Gardoni, Paolo, 2022. "Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    11. Chiou, Suh-Wen, 2020. "A resilience-based signal control for a time-dependent road network with hazmat transportation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    13. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Farnaz Khaghani & Farrokh Jazizadeh, 2020. "mD-Resilience: A Multi-Dimensional Approach for Resilience-Based Performance Assessment in Urban Transportation," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    15. Ebrahimnejad, Sadoullah & khanbaba, Amirhossein & Samimi, Sina, 2021. "Development of an Input-Output Model Considering Simultaneous Effect of Risks in Infrastructure under Dynamic Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Xu, Zizhen & Chopra, Shauhrat S., 2022. "Network-based Assessment of Metro Infrastructure with a Spatial–temporal Resilience Cycle Framework," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Senkel, Anne & Bode, Carsten & Schmitz, Gerhard, 2021. "Quantification of the resilience of integrated energy systems using dynamic simulation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    18. Munikoti, Sai & Lai, Kexing & Natarajan, Balasubramaniam, 2021. "Robustness assessment of Hetero-functional graph theory based model of interdependent urban utility networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Xinghua Feng & Yan Tang & Manyu Bi & Zeping Xiao & Yexi Zhong, 2022. "Analysis of Urban Resilience in Water Network Cities Based on Scale-Density-Morphology-Function (SDMF) Framework: A Case Study of Nanchang City, China," Land, MDPI, vol. 11(6), pages 1-23, June.
    20. Zhang, Zhenyu & Ji, Tingting & Wei, Hsi-Hsien, 2022. "Dynamic emergency inspection routing and restoration scheduling to enhance the post-earthquake resilience of a highway–bridge network," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8931-:d:435677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.