IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6024-d390397.html
   My bibliography  Save this article

A Vulnerability Assessment in Scant Data Context: The Case of North Horr Sub-County

Author

Listed:
  • Velia Bigi

    (Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino & Universita di Torino, 10125 Torino, Italy)

  • Alessandro Pezzoli

    (Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino & Universita di Torino, 10125 Torino, Italy)

  • Elena Comino

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, 10129 Torino, Italy)

  • Maurizio Rosso

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, 10129 Torino, Italy)

Abstract

In Kenyan rural areas belonging to the Arid and Semi-Arid Lands (ASALs), water quantity and water quality are major issues for the local population. In North Horr Sub-County water quality is threatened by nitrate contamination due to fecal matter pollution. This research, hence, aims at assessing the vulnerability of open shallow water sources to nitrate contamination due to fecal intrusion following flooding events and nitrate percolation in groundwater. The present research, indeed, provides, on one hand, new insights into the analysis of the vulnerability in a scant data context; on the other hand, it assesses the adaptation measures contained in the local development plan. Applying the reference definition of the Intergovernmental Panel on Climate Change (IPCC), the results demonstrate that the open shallow water sources in the northern part of the sub-county are more vulnerable to nitrate contamination. Furthermore, the consistency of the results proves the suitability of the methodology selected. Understanding the vulnerability at the local scale is key to planning risk-reduction strategies as well to increasing the local population’s knowledge about flood-related risks and water quality.

Suggested Citation

  • Velia Bigi & Alessandro Pezzoli & Elena Comino & Maurizio Rosso, 2020. "A Vulnerability Assessment in Scant Data Context: The Case of North Horr Sub-County," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6024-:d:390397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panagopoulos, Y. & Makropoulos, C. & Baltas, E. & Mimikou, M., 2011. "SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations," Ecological Modelling, Elsevier, vol. 222(19), pages 3500-3512.
    2. Albert Mumma & Michael Lane & Edward Kairu & Albert Tuinhof & Rafik Hirji, 2011. "Kenya Groundwater Governance Case Study," World Bank Publications - Reports 17227, The World Bank Group.
    3. Shadrack M. Kithiia, 2012. "Water Quality Degradation Trends in Kenya over the Last Decade," Chapters, in: Konstantinos (Kostas) Voudouris & Dimitra Voutsa (ed.), Water Quality Monitoring and Assessment, IntechOpen.
    4. Brendalynn O. Hoppe & Kristin K. Raab & Kenneth A. Blumenfeld & James Lundy, 2018. "Vulnerability assessment of future flood impacts for populations on private wells: utilizing climate projection data for public health adaptation planning," Climatic Change, Springer, vol. 148(4), pages 533-546, June.
    5. Ingrid Vigna & Velia Bigi & Alessandro Pezzoli & Angelo Besana, 2020. "Comparison and Bias-Correction of Satellite-Derived Precipitation Datasets at Local Level in Northern Kenya," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    6. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercy J. Borbor-Cordova & Geremy Ger & Angel A. Valdiviezo-Ajila & Mijail Arias-Hidalgo & David Matamoros & Indira Nolivos & Gonzalo Menoscal-Aldas & Federica Valle & Alessandro Pezzoli & Maria del Pi, 2020. "An Operational Framework for Urban Vulnerability to Floods in the Guayas Estuary Region: The Duran Case Study," Sustainability, MDPI, vol. 12(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Nan & Ruan, Xiao-Hong & Xu, Jing & Pan, Zha-Rong, 2014. "Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China," Ecological Modelling, Elsevier, vol. 276(C), pages 51-63.
    2. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    3. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    4. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    5. Daniela Salite, 2019. "Explaining the uncertainty: understanding small-scale farmers’ cultural beliefs and reasoning of drought causes in Gaza Province, Southern Mozambique," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(3), pages 427-441, September.
    6. Hongjian Zhou & Jing’ai Wang & Jinhong Wan & Huicong Jia, 2010. "Resilience to natural hazards: a geographic perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 21-41, April.
    7. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    8. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    9. Md. Jahangir Kabir & Mohammad Alauddin & Steven Crimp, 2016. "Farm-level Adaptation to Climate Change in Western Bangladesh: An Analysis of Adaptation Dynamics, Profitability and Risks," Discussion Papers Series 576, School of Economics, University of Queensland, Australia.
    10. Md. Nazir Hossain & Swapna Chowdhury & Shitangsu Kumar Paul, 2016. "Farmer-level adaptation to climate change and agricultural drought: empirical evidences from the Barind region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1007-1026, September.
    11. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    12. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    13. Afra Bashira Binth Arman & Fridolin Krausmann & Mohammad Mosharraf Hossain & Mohammad Sujauddin, 2023. "The evolution of biomass flows in Bangladesh (1961–2019): Providing insights for Bangladesh's transition to a sustainable circular bioeconomy," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 71-83, February.
    14. Md. Kamruzzaman & Md. Enamul Kabir & A. T. M. Sakiur Rahman & Chowdhury Sarwar Jahan & Quamrul Hasan Mazumder & M. Sayedur Rahman, 2018. "Modeling of agricultural drought risk pattern using Markov chain and GIS in the western part of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 569-588, April.
    15. Samiran Das, 2022. "Performance of a multi-parameter distribution in the estimation of extreme rainfall in tropical monsoon climate conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 191-205, January.
    16. Intekhab Alam & Shinji Otani & Abir Nagata & Mohammad Shahriar Khan & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2022. "Short- and Long-Term Effects of Drought on Selected Causes of Mortality in Northern Bangladesh," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    17. Davis, Peter & Ali, Snigdha, 2014. "Exploring local perceptions of climate change impact and adaptation in rural Bangladesh:," IFPRI discussion papers 1322, International Food Policy Research Institute (IFPRI).
    18. A. K. M. Abdullah Al-Amin & Tahmina Akhter & Abu Hayat Md. Saiful Islam & Hasneen Jahan & M. J. Hossain & Md. Masudul Haque Prodhan & Mohammed Mainuddin & Mac Kirby, 2019. "An intra-household analysis of farmers’ perceptions of and adaptation to climate change impacts: empirical evidence from drought prone zones of Bangladesh," Climatic Change, Springer, vol. 156(4), pages 545-565, October.
    19. Zhaoqi Zeng & Wenxiang Wu & Zhaolei Li & Yang Zhou & Han Huang, 2019. "Quantitative Assessment of Agricultural Drought Risk in Southeast Gansu Province, Northwest China," Sustainability, MDPI, vol. 11(19), pages 1-21, October.
    20. Najeebullah Khan & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim & Rawshan Ali, 2019. "Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh," Sustainability, MDPI, vol. 11(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6024-:d:390397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.