IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4350-d363043.html
   My bibliography  Save this article

Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data

Author

Listed:
  • Sarah Hasan

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Wenzhong Shi

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Xiaolin Zhu

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Sawaid Abbas

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Hafiz Usman Ahmed Khan

    (Department of Space Technology Application, Beihang University, Beijing 100000, China)

Abstract

Landscape transformations in rapidly urbanizing Guangdong, Hong Kong, and Macao (GHKM) regions of South China represent the most complex and dynamic processes altering the local ecology and environment. In this study, Land Change Modeler (LCM) is applied to land use land cover (LULC) maps for the years 2005, 2010, and 2017, derived from Landsat images, with the aim of understanding land use land cover change patterns during 2005–2017 and, further, to predict the future scenario of the years 2024 and 2031. Furthermore, the changes in spatial structural patterns are quantified and analyzed using selected landscape morphological metrics. The results show that the urban area has increased at an annual rate of 4.72% during 2005–2017 and will continue to rise from 10.31% (20,228.95 km 2 ) in 2017 to 16.30% (31,994.55 km 2 ) in 2031. This increase in urban area will encroach further into farmland and fishponds. However, forest cover will continue to increase from 45.02% (88,391.98 km 2 ) in 2017 to 46.88% (92,049.62 km 2 ) in 2031. This implies a decrease in the mean Euclidian nearest neighbor distance (ENN_MN) of forest patches (from 217.57 m to 206.46 m) and urban clusters (from 285.55 m to 245.06 m) during 2017–2031, indicating an accelerated landscape transformation if the current patterns of the change continues over the next decade. Thus, knowledge of the current and predicted LULC changes will help policy and decision makers to reconsider and develop new policies for the sustainable development and protection of natural resources.

Suggested Citation

  • Sarah Hasan & Wenzhong Shi & Xiaolin Zhu & Sawaid Abbas & Hafiz Usman Ahmed Khan, 2020. "Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data," Sustainability, MDPI, vol. 12(11), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4350-:d:363043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiran Han & Chengfeng Yang & Jinping Song, 2015. "Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    2. Dawn C. Parker, Tom Evans, Vicky Meretsky, 2001. "Measuring Emergent Properties of Agent-Based Landcover/Landuse Models using Spatial Metrics," Computing in Economics and Finance 2001 261, Society for Computational Economics.
    3. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    4. Geoghegan, Jacqueline & Wainger, Lisa A. & Bockstael, Nancy E., 1997. "Spatial landscape indices in a hedonic framework: an ecological economics analysis using GIS," Ecological Economics, Elsevier, vol. 23(3), pages 251-264, December.
    5. Junhua Chen & Fei Guo & Hao Wang & Zhifeng Wang & Ying Wu, 2018. "Urban Land Revenue and Sustainable Urbanization in China: Issues and Challenges," Sustainability, MDPI, vol. 10(7), pages 1-12, June.
    6. Martin Herold & Joseph Scepan & Keith C Clarke, 2002. "The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses," Environment and Planning A, , vol. 34(8), pages 1443-1458, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arshad, Salman & Ahmad, Sajid Rashid & Abbas, Sawaid & Asharf, Ather & Siddiqui, Nadia Asad & Islam, Zia ul, 2022. "Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan," Land Use Policy, Elsevier, vol. 113(C).
    2. Raquel Faria de Deus & José António Tenedório, 2021. "Coastal Land-Use and Land-Cover Change Trajectories: Are They Sustainable?," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    3. Megersa Kebede Leta & Tamene Adugna Demissie & Jens Tränckner, 2021. "Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    4. Chul-Min Song, 2021. "Analysis of the Effects of Local Regulations on the Preservation of Water Resources Using the CA-Markov Model," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    5. Ibra Lebbe Mohamed Zahir & Sunethra Thennakoon & Rev. Pinnawala Sangasumana & Jayani Herath & Buddhika Madurapperuma & Atham Lebbe Iyoob, 2021. "Spatiotemporal Land-Use Changes of Batticaloa Municipal Council in Sri Lanka from 1990 to 2030 Using Land Change Modeler," Geographies, MDPI, vol. 1(3), pages 1-12, September.
    6. Hailay Hagos Entahabu & Amare Sewnet Minale & Emiru Birhane, 2023. "Modeling and Predicting Land Use/Land Cover Change Using the Land Change Modeler in the Suluh River Basin, Northern Highlands of Ethiopia," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    7. Motuma Shiferaw Regasa & Michael Nones, 2022. "Past and Future Land Use/Land Cover Changes in the Ethiopian Fincha Sub-Basin," Land, MDPI, vol. 11(8), pages 1-20, August.
    8. Katharina Proswitz & Mamkwe Claudia Edward & Mariele Evers & Felister Mombo & Alexander Mpwaga & Kristian Näschen & Jennifer Sesabo & Britta Höllermann, 2021. "Complex Socio-Ecological Systems: Translating Narratives into Future Land Use and Land Cover Scenarios in the Kilombero Catchment, Tanzania," Sustainability, MDPI, vol. 13(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    2. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    3. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    4. Eshetu Yirsaw & Wei Wu & Xiaoping Shi & Habtamu Temesgen & Belew Bekele, 2017. "Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    5. Meryem Qacami & Abdellatif Khattabi & Said Lahssini & Nabil Rifai & Modeste Meliho, 2023. "Land-cover/land-use change dynamics modeling based on land change modeler," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(1), pages 237-258, February.
    6. Siddique Ullah & Adnan Ahmad Tahir & Tahir Ali Akbar & Quazi K. Hassan & Ashraf Dewan & Asim Jahangir Khan & Mudassir Khan, 2019. "Remote Sensing-Based Quantification of the Relationships between Land Use Land Cover Changes and Surface Temperature over the Lower Himalayan Region," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    7. Chunliu Gao & Deqiang Cheng & Javed Iqbal & Shunyu Yao, 2023. "Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards," Land, MDPI, vol. 12(2), pages 1-24, January.
    8. Xiuyan Zhao & Changhong Miao, 2022. "Spatial-Temporal Changes and Simulation of Land Use in Metropolitan Areas: A Case of the Zhengzhou Metropolitan Area, China," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    9. Muhammad Tauhidur Rahman & Adel S. Aldosary & Md. Golam Mortoja, 2017. "Modeling Future Land Cover Changes and Their Effects on the Land Surface Temperatures in the Saudi Arabian Eastern Coastal City of Dammam," Land, MDPI, vol. 6(2), pages 1-16, May.
    10. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    11. David M. Brasington & Diane Hite, 2005. "Demand for Environmental Quality: A Spatial Hedonic Approach," Departmental Working Papers 2005-08, Department of Economics, Louisiana State University.
    12. Parvez, Md Rezwanul & Ripplinger, David & Maduraperuma, Buddhika, 2015. "Modeling Land Use Pattern Change Analysis in the Northern Great Plains: A Novel Approach," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205868, Agricultural and Applied Economics Association.
    13. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    14. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    15. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    16. Fakhruddin, Fahmida & Espey, Molly, 2003. "Living On The Edge: Residential Property Values In The Urban/Rural Fringe?," 2003 Annual meeting, July 27-30, Montreal, Canada 22072, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. Caruso, Geoffrey & Peeters, Dominique & Cavailhes, Jean & Rounsevell, Mark, 2007. "Spatial configurations in a periurban city. A cellular automata-based microeconomic model," Regional Science and Urban Economics, Elsevier, vol. 37(5), pages 542-567, September.
    18. Sanglim Yoo & John E. Wagner, 2016. "A review of the hedonic literatures in environmental amenities from open space: a traditional econometric vs. spatial econometric model," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(1), pages 141-166, March.
    19. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    20. Jay Mittal, 2017. "Valuing Visual Accessibility of Scenic Landscapes in a Single Family Housing Market: A Spatial Hedonic Approach," ERES eres2017_1, European Real Estate Society (ERES).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4350-:d:363043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.