IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p294-d303359.html
   My bibliography  Save this article

The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment–Life Cycle Cost Integrated Model

Author

Listed:
  • Zhuyuan Xue

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Hongbo Liu

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Qinxiao Zhang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Jingxin Wang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Jilin Fan

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Xia Zhou

    (Shangrao Ecology and Environment Bureau, Shangrao 334000, China)

Abstract

The development of higher education has led to an increasing demand for campus buildings. To promote the sustainable development of campus buildings, this paper combines social willingness-to-pay (WTP) with the analytic hierarchy process (AHP) based on the characteristics of Chinese campus buildings to establish a life cycle assessment–life cycle cost (LCA–LCC) integrated model. Based on this model, this paper analyses the teaching building at a university in North China. The results show that the environmental impacts and economic costs are largest in the operation phase of the life cycle, mainly because of the use of electric energy. The environmental impacts and economic costs during the construction phase mainly come from the building material production process (BMPP); in this process, steel is the main source. Throughout the life cycle, abiotic depletion-fossil fuel potential (ADP fossil) and global warming potential (GWP) are the most prominent indexes. Further analysis shows that these two indexes should be the emphases of similar building assessments in the near future. Finally, this study offers suggestions for the proposed buildings and existing buildings based on the prominent problems found in the case study, with the aim to provide reference for the design, construction, and operation management of similar buildings.

Suggested Citation

  • Zhuyuan Xue & Hongbo Liu & Qinxiao Zhang & Jingxin Wang & Jilin Fan & Xia Zhou, 2019. "The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment–Life Cycle Cost Integrated Model," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:294-:d:303359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/294/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ignacio Zabalza & Sabina Scarpellini & Alfonso Aranda & Eva Llera & Alberto Jáñez, 2013. "Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain," Energies, MDPI, vol. 6(8), pages 1-21, August.
    2. Yasmeen Hossain & Tom Marsik, 2019. "Conducting Life Cycle Assessments (LCAs) to Determine Carbon Payback: A Case Study of a Highly Energy-Efficient House in Rural Alaska," Energies, MDPI, vol. 12(9), pages 1-11, May.
    3. Paolo Tecchio & Jeremy Gregory & Elsa Olivetti & Randa Ghattas & Randolph Kirchain, 2019. "Streamlining the Life Cycle Assessment of Buildings by Structured Under‐Specification and Probabilistic Triage," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 268-279, February.
    4. Gulzhanat Akhanova & Abid Nadeem & Jong R. Kim & Salman Azhar, 2019. "A Framework of Building Sustainability Assessment System for the Commercial Buildings in Kazakhstan," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    5. Edwin Zea Escamilla & Guillaume Habert & Juan Francisco Correal Daza & Hector F. Archilla & Juan Sebastian Echeverry Fernández & David Trujillo, 2018. "Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    6. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Yannick Lessard & Chirjiv Anand & Pierre Blanchet & Caroline Frenette & Ben Amor, 2018. "LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1105-1116, October.
    8. Abdulaziz Alghamdi & Husnain Haider & Kasun Hewage & Rehan Sadiq, 2019. "Inter-University Sustainability Benchmarking for Canadian Higher Education Institutions: Water, Energy, and Carbon Flows for Technical-Level Decision-Making," Sustainability, MDPI, vol. 11(9), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongli Wang & Shanshan Song & Mingchen Gao & Jingyan Wang & Jinrong Zhu & Zhongfu Tan, 2020. "Accounting for the Life Cycle Cost of Power Grid Projects by Employing a System Dynamics Technique: A Power Reform Perspective," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    2. Ana Rosa Gamarra & Carmen Lago & Israel Herrera-Orozco & Yolanda Lechón & Susana Marta Almeida & Joana Lage & Filipe Silva, 2021. "Low-Carbon Economy in Schools: Environmental Footprint and Associated Externalities of Five Schools in Southwestern Europe," Energies, MDPI, vol. 14(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    2. Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
    3. Tihamér Tibor Sebestyén, 2024. "Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    4. Ali M. Al-Bahi & Mohamed S. Abd-Elwahed & Abdelfattah Y. Soliman, 2021. "Implementation of Sustainability Indicators in Engineering Education Using a Combined Balanced Scorecard and Quality Function Deployment Approaches," Sustainability, MDPI, vol. 13(13), pages 1-28, June.
    5. Aidana Tleuken & Galym Tokazhanov & Mert Guney & Ali Turkyilmaz & Ferhat Karaca, 2021. "Readiness Assessment of Green Building Certification Systems for Residential Buildings during Pandemics," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    6. Adriana Estokova & Marcela Ondova & Martina Wolfova & Alena Paulikova & Stanislav Toth, 2019. "Examination of Bearing Walls Regarding Their Environmental Performance," Energies, MDPI, vol. 12(2), pages 1-27, January.
    7. Liyin Shen & Junsi Yang & Rong Zhang & Changzhuan Shao & Xiangnan Song, 2019. "The Benefits and Barriers for Promoting Bamboo as a Green Building Material in China—An Integrative Analysis," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    8. Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
    9. Elżbieta Broniewicz & Karolina Dec, 2022. "Environmental Impact of Demolishing a Steel Structure Design for Disassembly," Energies, MDPI, vol. 15(19), pages 1-16, October.
    10. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    11. Bernardette Soust-Verdaguer & Elisabetta Palumbo & Carmen Llatas & Álvaro Velasco Acevedo & María Dolores Fernández Galvéz & Endrit Hoxha & Alexander Passer, 2023. "The Use of Environmental Product Declarations of Construction Products as a Data Source to Conduct a Building Life-Cycle Assessment in Spain," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    12. Serik Tokbolat & Farnush Nazipov & Jong R. Kim & Ferhat Karaca, 2019. "Evaluation of the Environmental Performance of Residential Building Envelope Components," Energies, MDPI, vol. 13(1), pages 1-10, December.
    13. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    14. Wang, Ping & Wang, Jinman & Qin, Qian & Wang, Hongdan, 2017. "Life cycle assessment of magnetized fly-ash compound fertilizer production: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 706-713.
    15. Faham Tahmasebinia & Yuanchen Ma & Karl Joshua & Saleh Mohammad Ebrahimzadeh Sepasgozar & Yang Yu & Jike Li & Samad Sepasgozar & Fernando Alonso Marroquin, 2021. "Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    16. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    17. Denner Deda & Helena Gervásio & Margarida J. Quina, 2023. "Bibliometric Analysis and Benchmarking of Life Cycle Assessment of Higher Education Institutions," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    18. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Abdulaziz Alghamdi & Guangji Hu & Husnain Haider & Kasun Hewage & Rehan Sadiq, 2020. "Benchmarking of Water, Energy, and Carbon Flows in Academic Buildings: A Fuzzy Clustering Approach," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    20. Xingwei Xiang & Qian Wu & Ye Zhang & Bifeng Zhu & Xiaoji Wang & Anping Wan & Tongle Huang & Luoke Hu, 2021. "A Pedagogical Approach to Incorporating the Concept of Sustainability into Design-to-Physical-Construction Teaching in Introductory Architectural Design Courses: A Case Study on a Bamboo Construction ," Sustainability, MDPI, vol. 13(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:294-:d:303359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.