IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6654-d290562.html
   My bibliography  Save this article

Numerical Study of Balancing between Indoor Building Energy and Outdoor Thermal Comfort with a Flexible Building Element

Author

Listed:
  • Choul Woong Kwon

    (SUSB Centre, Hanyang University, Gyeonggi-do 15588, Korea)

  • Kang Jun Lee

    (School of Architecture, Hanyang University, Gyeonggi-do 15588, Korea)

  • Soolyeon Cho

    (School of Architecture, College of Design, NC State University, Raleigh, NC 27695, USA)

Abstract

This study analyzed the environmental role of a flexible canopy as a microclimate modifier in balancing indoor energy demands and outdoor thermal comfort. Flexible building elements are often installed in traditional buildings, depending on the local climate in southern Europe. The architectural performance of a canopy was analyzed using several environmental software packages (Ecotect, Rayman, WinAir, DaySim, and EDSL TAS). Coupling methods were applied to determine the environmental influence of the attached building element, a canopy with fixed and operable panes in different orientations and locations. The results showed that the flexible canopy played a crucial role in reducing indoor energy demands (heating and electricity for lighting) and increasing outdoor thermal comfort under the canopy area. Outdoor thermally comfortable conditions ranging between 13 and 29 °C in the canopy space could be enhanced by 56.3% over the entire year by manipulating a flexible canopy, compared with a fixed canopy with 90% transparency in London. The flexible canopy with higher transparency helped increase outdoor thermal comfort in Glasgow, while one with lower transparency showed better performance during summer in London. The findings of this research will help broaden the range of architectural elements used in buildings.

Suggested Citation

  • Choul Woong Kwon & Kang Jun Lee & Soolyeon Cho, 2019. "Numerical Study of Balancing between Indoor Building Energy and Outdoor Thermal Comfort with a Flexible Building Element," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6654-:d:290562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyungkeun Kim & Kyungsoo Lee & Taeyeon Kim, 2018. "Investigation of Pedestrian Comfort with Wind Chill during Winter," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    2. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domenico Mazzeo & Giuseppe Oliveti, 2020. "Advanced Innovative Solutions for Final Design in Terms of Energy Sustainability of Nearly/Net Zero Energy Buildings (nZEB)," Sustainability, MDPI, vol. 12(24), pages 1-5, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    2. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    3. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    4. Kadri Keskküla & Tambet Aru & Mihkel Kiviste & Martti-Jaan Miljan, 2020. "Hygrothermal Analysis of Masonry Wall with Reed Boards as Interior Insulation System," Energies, MDPI, vol. 13(20), pages 1-10, October.
    5. Václav Kočí & Jan Kočí & Jiří Maděra & Jaroslav Žák & Robert Černý, 2020. "Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details," Energies, MDPI, vol. 13(2), pages 1-17, January.
    6. Cristina S. Polo López & Elena Lucchi & Eleonora Leonardi & Antonello Durante & Anne Schmidt & Roger Curtis, 2021. "Risk-Benefit Assessment Scheme for Renewable Solar Solutions in Traditional and Historic Buildings," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
    7. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    8. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    10. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    11. Laura Balaguer & Fernando Vegas López-Manzanares & Camilla Mileto & Lidia García-Soriano, 2019. "Assessment of the Thermal Behaviour of Rammed Earth Walls in the Summer Period," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
    12. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    13. Blázquez, Teresa & Ferrari, Simone & Suárez, Rafael & Sendra, Juan José, 2019. "Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat," Energy, Elsevier, vol. 181(C), pages 504-520.
    14. Mariangela De Vita & Giulia Massari & Pierluigi De Berardinis, 2020. "Retrofit Methodology Based on Energy Simulation Modeling Applied for the Enhancement of a Historical Building in L’Aquila," Energies, MDPI, vol. 13(12), pages 1-26, June.
    15. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    16. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    17. Luca Sbrogiò & Carlotta Bevilacqua & Gabriele De Sordi & Ivano Michelotto & Marco Sbrogiò & Antonio Toniolo & Christian Tosato, 2021. "Strategies for Structural and Energy Improvement in Mid-Rise Unreinforced Masonry Apartment Buildings. A Case Study in Mestre (Northeast Italy)," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    18. Khadidja Rahmani & Atef Ahriz & Nahla Bouaziz, 2022. "Development of a New Residential Energy Management Approach for Retrofit and Transition, Based on Hybrid Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    19. Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
    20. Bottino-Leone, Dario & Larcher, Marco & Troi, Alexandra & Grunewald, John, 2021. "Impact of climatic parameters on rain protection layer design for refurbished historic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6654-:d:290562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.