IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6172-d283729.html
   My bibliography  Save this article

Heterogeneous Winter Wheat Populations Differ in Yield Stability Depending on their Genetic Background and Management System

Author

Listed:
  • Odette D. Weedon

    (Department of Ecological Plant Protection, University of Kassel, Nordbahnhofstr. 1 a, 37213 Witzenhausen, Germany)

  • Maria R. Finckh

    (Department of Ecological Plant Protection, University of Kassel, Nordbahnhofstr. 1 a, 37213 Witzenhausen, Germany)

Abstract

Twelve winter wheat composite cross populations (CCPs), based on three genetic backgrounds and maintained at the University of Kassel, Germany, under both organic and conventional management, were assessed for yield performance and stability in comparison to two commercial varieties over eight and 10 experimental years. A number of stability parameters were chosen in order to identify populations with either adaptation to specific environments or broad adaptation across environments. The genetic effects of the CCP parental varieties were clearly present when comparing CCP yield performance in both management systems. Compared to the variety ‘Capo’, CCPs yielded similarly under organic, but poorer under conventional conditions. Under both management systems, CCPs with the broadest or with a more modern (high yielding) genetic base achieved the greatest yield stability, exceeding that of ‘Capo’, and demonstrating the buffering capacity of genetic diversity. CCPs with a genetic background of high yielding parents reacted most strongly to the different environments and apparently diverged under conventional management over time. Possibilities to improve CCPs through the addition of new genetic material while maintaining the benefits of diversity to achieve higher and more stable yields, particularly in light of increasingly unpredictable climatic conditions are discussed.

Suggested Citation

  • Odette D. Weedon & Maria R. Finckh, 2019. "Heterogeneous Winter Wheat Populations Differ in Yield Stability Depending on their Genetic Background and Management System," Sustainability, MDPI, vol. 11(21), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6172-:d:283729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas F. Döring & Samuel Knapp & Geza Kovacs & Kevin Murphy & Martin S. Wolfe, 2011. "Evolutionary Plant Breeding in Cereals—Into a New Era," Sustainability, MDPI, vol. 3(10), pages 1-28, October.
    2. Harry Gollob, 1968. "A statistical model which combines features of factor analytic and analysis of variance techniques," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 73-115, March.
    3. David Cleveland, 2001. "Is plant breeding science objective truth or social construction? The case of yield stability," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(3), pages 251-270, September.
    4. repec:lib:0000of:v:3:y:2017:i:1:p:34-50 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda Legzdiņa & Māra Bleidere & Dace Piliksere & Indra Ločmele, 2022. "Agronomic Performance of Heterogeneous Spring Barley Populations Compared with Mixtures of Their Parents and Homogeneous Varieties," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    2. Johannes Timaeus & Odette Denise Weedon & Maria Renate Finckh, 2021. "Combining Genetic Gain and Diversity in Plant Breeding: Heritability of Root Selection in Wheat Populations," Sustainability, MDPI, vol. 13(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lance F. Merrick & Steven R. Lyon & Kerry A. Balow & Kevin M. Murphy & Stephen S. Jones & Arron H. Carter, 2020. "Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    2. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    3. Ronnie Vernooy & Bhuwon Sthapit & Gea Galluzzi & Pitambar Shrestha, 2014. "The Multiple Functions and Services of Community Seedbanks," Resources, MDPI, vol. 3(4), pages 1-21, November.
    4. Rose Nankya & John W. Mulumba & Francesco Caracciolo & Maria Raimondo & Francesca Schiavello & Elisabetta Gotor & Enoch Kikulwe & Devra I. Jarvis, 2017. "Yield Perceptions, Determinants and Adoption Impact of on Farm Varietal Mixtures for Common Bean and Banana in Uganda," Sustainability, MDPI, vol. 9(8), pages 1-15, July.
    5. Ahakpaz, Farhad & Abdi, Hossein & Neyestani, Elyas & Hesami, Ali & Mohammadi, Behrouz & Mahmoudi, Kourosh Nader & Abedi-Asl, Gholamreza & Noshabadi, Mohammad Reza Jazayeri & Ahakpaz, Farzad & Alipour,, 2021. "Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Michael Halewood & Ana Bedmar Villanueva & Jazzy Rasolojaona & Michelle Andriamahazo & Naritiana Rakotoniaina & Bienvenu Bossou & Toussaint Mikpon & Raymond Vodouhe & Lena Fey & Andreas Drews & P. Lav, 2021. "Enhancing farmers’ agency in the global crop commons through use of biocultural community protocols," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(2), pages 579-594, June.
    7. Frank Kutka, 2011. "Open-Pollinated vs. Hybrid Maize Cultivars," Sustainability, MDPI, vol. 3(9), pages 1-24, September.
    8. Franck, Christopher T. & Nielsen, Dahlia M. & Osborne, Jason A., 2013. "A method for detecting hidden additivity in two-factor unreplicated experiments," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 95-104.
    9. Choulakian, Vartan, 2005. "Transposition invariant principal component analysis in L1 for long tailed data," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 23-31, January.
    10. Griffin, Maryclare & Hoff, Peter D., 2019. "Lasso ANOVA decompositions for matrix and tensor data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 181-194.
    11. Kamila Nowosad & Jan Bocianowski & Farzad Kianersi & Alireza Pour-Aboughadareh, 2023. "Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize ( Zea mays L.)," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    12. Eva Johansson & Faraz Muneer & Thomas Prade, 2023. "Plant Breeding to Mitigate Climate Change—Present Status and Opportunities with an Assessment of Winter Wheat Cultivation in Northern Europe as an Example," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    13. Johannes Timaeus & Odette Denise Weedon & Maria Renate Finckh, 2021. "Combining Genetic Gain and Diversity in Plant Breeding: Heritability of Root Selection in Wheat Populations," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    14. Mark Appelbaum, 1986. "Statistics, data analysis and Psychometrika: Major developments," Psychometrika, Springer;The Psychometric Society, vol. 51(1), pages 53-56, March.
    15. repec:jss:jstsof:34:i10 is not listed on IDEAS
    16. Ireneusz Kowalik & Bogna Zawieja & Piotr Rybacki & Krzysztof Krzyżaniak, 2023. "Evaluation of the Quality and Possible Use of a New Generation of Agricultural Nets for Packing Bulk Materials in Terms of the Aspect of Reducing the Environmental Burden," Agriculture, MDPI, vol. 13(2), pages 1-11, February.
    17. Yoshio Takane & Tadashi Shibayama, 1991. "Principal component analysis with external information on both subjects and variables," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 97-120, March.
    18. Erik Schwarzbach & Jiří Hartmann & Hans-Peter Piepho, 2007. "Multiplicative main cultivar effects in Czech official winter wheat trials 1976-2005," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 43(4), pages 117-124.
    19. Véronique Chable & Edwin Nuijten & Ambrogio Costanzo & Isabelle Goldringer & Riccardo Bocci & Bernadette Oehen & Frédéric Rey & Dionysia Fasoula & Judit Feher & Marjo Keskitalo & Beate Koller & Michal, 2020. "Embedding Cultivated Diversity in Society for Agro-Ecological Transition," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    20. John C. Gower & Sugnet Gardner-Lubbe & Niel J. Le Roux, 2018. "Interaction: Fisher’s Optimal Scores Revisited," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 92-112, March.
    21. Soleri, Daniela & Cleveland, David A. & Glasgow, Garrett & Sweeney, Stuart H. & Cuevas, Flavio Aragón & Fuentes, Mario R. & Ríos L., Humberto, 2008. "Testing assumptions underlying economic research on transgenic food crops for Third World farmers: Evidence from Cuba, Guatemala and Mexico," Ecological Economics, Elsevier, vol. 67(4), pages 667-682, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6172-:d:283729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.