IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4564-d259997.html
   My bibliography  Save this article

Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain

Author

Listed:
  • Rajesh Kumar Soothar

    (State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation of China/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
    Department of Irrigation and Drainage, Sindh Agriculture University, Tandojam 70060, Pakistan)

  • Wenying Zhang

    (Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China)

  • Binhui Liu

    (Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China)

  • Moussa Tankari

    (State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation of China/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China)

  • Chao Wang

    (State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation of China/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China)

  • Li Li

    (State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation of China/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China)

  • Huanli Xing

    (State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation of China/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China)

  • Daozhi Gong

    (State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation of China/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China)

  • Yaosheng Wang

    (State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation of China/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China)

Abstract

Brackish water used for irrigation can restrict crop growth and lead to environmental problems. The alternate irrigation with saline water at different growth stages is still not well understood. Therefore, field trials were conducted during 2015–2018 in the NCP to investigate whether alternate irrigation is practicable for winter wheat production. The treatments comprised rain-fed cultivation (NI), fresh and saline water irrigation (FS), saline and fresh water irrigation (SF), saline water irrigation (SS) and fresh water irrigation (FF). The results showed that the grain yield was increased by 20% under SF and FS treatments compared to NI, while a minor decrease of 2% in grain yield was observed compared with FF treatment. The increased soil salinity and risk of long-term salt accumulation in the soil due to alternate irrigation during peak dry periods was insignificant due to leaching of salts from crop root zone during monsoon season. Although Na + concentration in the leaves increased with saline irrigation, resulting in significantly lower K + :Na + ratio in the leaves, the Na + and K + concentrations in the roots and grains were not affected. In conclusion, the alternate irrigation for winter wheat is a most promising option to harvest more yield and save fresh water resources.

Suggested Citation

  • Rajesh Kumar Soothar & Wenying Zhang & Binhui Liu & Moussa Tankari & Chao Wang & Li Li & Huanli Xing & Daozhi Gong & Yaosheng Wang, 2019. "Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4564-:d:259997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamdy, A. & Sardo, V. & Ghanem, K.A. Farrag, 2005. "Saline water in supplemental irrigation of wheat and barley under rainfed agriculture," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 122-127, September.
    2. Baath, Gurjinder S. & Shukla, Manoj K. & Bosland, Paul W. & Steiner, Robert L. & Walker, Stephanie J., 2017. "Irrigation water salinity influences at various growth stages of Capsicum annuum," Agricultural Water Management, Elsevier, vol. 179(C), pages 246-253.
    3. Malash, N. & Flowers, T.J. & Ragab, R., 2005. "Effect of irrigation systems and water management practices using saline and non-saline water on tomato production," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 25-38, September.
    4. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    5. Kirby, Mac & Ahmad, Mobin-ud-Din & Mainuddin, Mohammed & Khaliq, Tasneem & Cheema, M.J.M., 2017. "Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050," Agricultural Water Management, Elsevier, vol. 179(C), pages 34-46.
    6. Kafi, Mohammad & Asadi, Hajar & Ganjeali, Ali, 2010. "Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems," Agricultural Water Management, Elsevier, vol. 97(1), pages 139-147, January.
    7. Chauhan, C.P.S. & Singh, R.B. & Gupta, S.K., 2008. "Supplemental irrigation of wheat with saline water," Agricultural Water Management, Elsevier, vol. 95(3), pages 253-258, March.
    8. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    9. Yang, Yanmin & Yang, Yonghui & Moiwo, Juana Paul & Hu, Yukun, 2010. "Estimation of irrigation requirement for sustainable water resources reallocation in North China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1711-1721, November.
    10. Kendy, E. & Molden, David J. & Steenhuis, T. S. & Liu, C., 2003. "Policies drain the North China Plain: Agricultural policy and groundwater depletion in Luancheng County, 1949-2000," IWMI Research Reports H033678, International Water Management Institute.
    11. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    12. Minhas, P. S. & Gupta, R. K., 1993. "Conjunctive use of saline and non-saline waters. I. Response of wheat to initial salinity profiles and salinisation patterns," Agricultural Water Management, Elsevier, vol. 23(2), pages 125-137, April.
    13. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    14. Naresh, R. K. & Minhas, P. S. & Goyal, A. K. & Chauhan, C. P. S. & Gupta, R. K., 1993. "Conjunctive use of saline and non-saline waters. II. Field comparisions of cyclic uses and mixing for wheat," Agricultural Water Management, Elsevier, vol. 23(2), pages 139-148, April.
    15. Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
    16. Pang, Huan-Cheng & Li, Yu-Yi & Yang, Jin-Song & Liang, Ye-Sen, 2010. "Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions," Agricultural Water Management, Elsevier, vol. 97(12), pages 1971-1977, November.
    17. Kendy, Eloise & Molden, David J. & Steenhuis, Tammo S. & Liu, Changming & Wang, Jinxia, 2003. "Policies drain the North China Plain: Agricultural policy and groundwater depletion in Luancheng County, 1949-2000," IWMI Research Reports 44560, International Water Management Institute.
    18. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    19. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2000. "Salt tolerance classification of crops according to soil salinity and to water stress day index," Agricultural Water Management, Elsevier, vol. 43(1), pages 99-109, February.
    20. Di Gioia, Francesco & Rosskopf, Erin N. & Leonardi, Cherubino & Giuffrida, Francesco, 2018. "Effects of application timing of saline irrigation water on broccoli production and quality," Agricultural Water Management, Elsevier, vol. 203(C), pages 97-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongrui Han & Hongyan Cai & Xiaohuan Yang & Xinliang Xu, 2020. "Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    2. Jia, Dianyong & Dai, Xinglong & Xie, Yuli & He, Mingrong, 2021. "Alternate furrow irrigation improves grain yield and nitrogen use efficiency in winter wheat," Agricultural Water Management, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    2. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    3. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
    7. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    8. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    9. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Mansour, Elsayed & Abdul-Hamid, Mohamed I & Yasin, Mohamed T & Qabil, Naglaa & Attia, Ahmed, 2017. "Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 194(C), pages 58-67.
    11. Dong, Xinliang & Wang, Jintao & Zhang, Xuejia & Dang, Hongkai & Singh, Bhupinder Pal & Liu, Xiaojing & Sun, Hongyong, 2022. "Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    13. Verma, A.K. & Gupta, S.K. & Isaac, R.K., 2012. "Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modeling with SWAP," Agricultural Water Management, Elsevier, vol. 115(C), pages 186-193.
    14. Wang, Xiangping & Liu, Guangming & Yang, Jingsong & Huang, Guanhua & Yao, Rongjiang, 2017. "Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model," Agricultural Water Management, Elsevier, vol. 185(C), pages 13-26.
    15. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    16. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    17. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.
    19. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    20. Choudhary, O.P. & Ghuman, B.S. & Josan, A.S. & Bajwa, M.S., 2006. "Effect of alternating irrigation with sodic and non-sodic waters on soil properties and sunflower yield," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 151-156, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4564-:d:259997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.