IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2767-d162080.html
   My bibliography  Save this article

On Decision Makers’ Perceptions of What an Ecological Computer Model is, What It Does, and Its Impact on Limiting Model Acceptance

Author

Listed:
  • Fabio Boschetti

    (CSIRO Oceans & Atmosphere, Perth WA 6907, Australia
    School of Earth and Geographical Sciences, The University of Western Australia, Crawley WA 6009, Australia)

  • Michael Hughes

    (School of Veterinary and Life Sciences, Environmental and Conservation Sciences, Murdoch University, Murdoch WA 6150, Australia)

  • Cheryl Jones

    (School of Education, Murdoch University, Murdoch WA 6150, Australia)

  • Hector Lozano-Montes

    (CSIRO Oceans & Atmosphere, Perth WA 6907, Australia)

Abstract

Environmental decision makers are required to understand complex ecological processes and ecological computer models are designed to facilitate this understanding. A set of interviews reveals three main perceptions affecting senior environmental decision makers’ trust in ecological computer models as decision facilitation tools: an ecological computer model is perceived as (i) a ‘black box’, (ii) processing poorly documented, sparse and out-of-date input data, and (iii) whose sensitivity to model parameters enables manipulation to produce desired outcomes justifying pre-conceived decisions. This leads to lack of trust towards both ecological computer models and model-users, including other scientists and decision makers. Model acceptance appears to depend on the amount, currency and geographical origin of input data. This is at odds with modellers’ communication style, which typically places more emphasis on highlighting the ecological computer model’s features and performance, rather than on describing the input data. Developing ‘big data’ capabilities could deliver the large, real-time, local data that may enhance acceptance. However, the size and complexity of ‘big data’ requires automated pre-processing, using modelling and algorithms that are even more inscrutable than current ecological computer models. Future trust in ecological computer models will likely depend on how this dilemma is resolved, which is likely to require improved communication between modellers and decision makers.

Suggested Citation

  • Fabio Boschetti & Michael Hughes & Cheryl Jones & Hector Lozano-Montes, 2018. "On Decision Makers’ Perceptions of What an Ecological Computer Model is, What It Does, and Its Impact on Limiting Model Acceptance," Sustainability, MDPI, vol. 10(8), pages 1-10, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2767-:d:162080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boschetti, Fabio & Richert, Claire & Walker, Iain & Price, Jennifer & Dutra, Leo, 2012. "Assessing attitudes and cognitive styles of stakeholders in environmental projects involving computer modelling," Ecological Modelling, Elsevier, vol. 247(C), pages 98-111.
    2. Coro, Gianpaolo & Vilas, Luis Gonzalez & Magliozzi, Chiara & Ellenbroek, Anton & Scarponi, Paolo & Pagano, Pasquale, 2018. "Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea," Ecological Modelling, Elsevier, vol. 371(C), pages 37-49.
    3. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    4. Steenbeek, Jeroen & Buszowski, Joe & Christensen, Villy & Akoglu, Ekin & Aydin, Kerim & Ellis, Nick & Felinto, Dalai & Guitton, Jerome & Lucey, Sean & Kearney, Kelly & Mackinson, Steven & Pan, Mike & , 2016. "Ecopath with Ecosim as a model-building toolbox: Source code capabilities, extensions, and variations," Ecological Modelling, Elsevier, vol. 319(C), pages 178-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Iturriza & Josune Hernantes & Leire Labaka, 2019. "Coming to Action: Operationalizing City Resilience," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    2. Ksenija Lalović & Jelena Živković & Uroš Radosavljević & Zoran Đukanović, 2019. "An Integral Approach to the Modeling of Information Support for Local Sustainable Development—Experiences of a Serbian Enabling Leadership Experiment," Sustainability, MDPI, vol. 11(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    3. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    4. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    5. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    6. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    7. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    8. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    9. Bauduin, Sarah & Grente, Oksana & Santostasi, Nina Luisa & Ciucci, Paolo & Duchamp, Christophe & Gimenez, Olivier, 2020. "An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations," Ecological Modelling, Elsevier, vol. 433(C).
    10. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).
    11. Graciá, Eva & Rodríguez-Caro, Roberto C. & Sanz-Aguilar, Ana & Anadón, José D. & Botella, Francisco & García-García, Angel Luis & Wiegand, Thorsten & Giménez, Andrés, 2020. "Assessment of the key evolutionary traits that prevent extinctions in human-altered habitats using a spatially explicit individual-based model," Ecological Modelling, Elsevier, vol. 415(C).
    12. Ahmed Laatabi & Nicolas Marilleau & Tri Nguyen-Huu & Hassan Hbid & Mohamed Ait Babram, 2018. "ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-9.
    13. Ahmadreza Asgharpourmasouleh & Atiye Sadeghi & Ali Yousofi, 2017. "A Grounded Agent-Based Model of Common Good Production in a Residential Complex: Applying Artificial Experiments," SAGE Open, , vol. 7(4), pages 21582440177, October.
    14. Student, Jillian & Kramer, Mark R. & Steinmann, Patrick, 2020. "Simulating emerging coastal tourism vulnerabilities: an agent-based modelling approach," Annals of Tourism Research, Elsevier, vol. 85(C).
    15. Ascensão, Fernando & Clevenger, Anthony & Santos-Reis, Margarida & Urbano, Paulo & Jackson, Nathan, 2013. "Wildlife–vehicle collision mitigation: Is partial fencing the answer? An agent-based model approach," Ecological Modelling, Elsevier, vol. 257(C), pages 36-43.
    16. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    17. Brito, Izabella de Andrade & López-Barrera, Ellie Anne & Araújo, Sabrina Borges Lino & Ribeiro, Ciro Alberto de Oliveira, 2017. "Modeling the exposure risk of the silver catfish Rhamdia quelen (Teleostei, Heptapteridae) to wastewater," Ecological Modelling, Elsevier, vol. 347(C), pages 40-49.
    18. Myong-Hun Chang & Troy Tassier, 2023. "Spatial Disparities in Vaccination and the Risk of Infection in a Multi-Region Agent-Based Model of Epidemic Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(3), pages 1-3.
    19. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    20. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2767-:d:162080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.