IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1747-d149150.html
   My bibliography  Save this article

Model-Based Evaluation of Urban River Restoration: Conflicts between Sensitive Fish Species and Recreational Users

Author

Listed:
  • Aude Zingraff-Hamed

    (Interdisciplinary Research Center for Cities, Territories, Environment and Society (UMR CNRS 7324 CITERES), University François Rabelais, 33 allée Ferdinand de Lesseps, 37000 Tours, France
    Strategic Landscape Planning and Management, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 6, 85354 Freising, Germany)

  • Markus Noack

    (Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany)

  • Sabine Greulich

    (Interdisciplinary Research Center for Cities, Territories, Environment and Society (UMR CNRS 7324 CITERES), University François Rabelais, 33 allée Ferdinand de Lesseps, 37000 Tours, France)

  • Kordula Schwarzwälder

    (Hydraulic and Water Resources Engineering, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany
    Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Høgskoleringen 7a, 7491 Trondheim, Norway)

  • Karl Matthias Wantzen

    (Interdisciplinary Research Center for Cities, Territories, Environment and Society (UMR CNRS 7324 CITERES), University François Rabelais, 33 allée Ferdinand de Lesseps, 37000 Tours, France
    Applied Aquatic Ecology and UNESCO Chair “River Cu lture-Fleuves et Patrimoine” CNRS UMR CITERES, University François Rabelais, 33 allée Ferdinand de Lesseps, 37000 Tours, France)

  • Stephan Pauleit

    (Strategic Landscape Planning and Management, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 6, 85354 Freising, Germany)

Abstract

Urban rivers are socioecological systems, and restored habitats may be attractive to both sensitive species and recreationists. Understanding the potential conflicts between ecological and recreational values is a critical issue for the development of a sustainable river-management plan. Habitat models are very promising tools for the ecological evaluation of river restoration projects that are already concluded, ongoing, or even to be planned. With our paper, we make a first attempt at integrating recreational user pressure into habitat modeling. The objective of this study was to analyze whether human impact is likely to hinder the re-establishment of a target species despite the successful restoration of physical habitat structures in the case of the restoration of the Isar River in Munich (Germany) and the target fish species Chondostroma nasus L. Our analysis combined high-resolution 2D hydrodynamic modeling with mapping of recreational pressure and used an expert-based procedure for modeling habitat suitability. The results are twofold: (1) the restored river contains suitable physical habitats for population conservation but has low suitability for recruitment; (2) densely used areas match highly suitable habitats for C. nasus. In the future, the integrated modeling procedure presented here may allow ecological refuge for sensitive target species to be included in the design of restoration and may help in the development of visitor-management plans to safeguard biodiversity and recreational ecosystem services.

Suggested Citation

  • Aude Zingraff-Hamed & Markus Noack & Sabine Greulich & Kordula Schwarzwälder & Karl Matthias Wantzen & Stephan Pauleit, 2018. "Model-Based Evaluation of Urban River Restoration: Conflicts between Sensitive Fish Species and Recreational Users," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1747-:d:149150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mouton, Ans M. & Schneider, Matthias & Peter, Armin & Holzer, Georg & Müller, Rudolf & Goethals, Peter L.M. & De Pauw, Niels, 2008. "Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland)," Ecological Modelling, Elsevier, vol. 215(1), pages 122-132.
    2. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    3. Gerd Lupp & Bernhard Förster & Valerie Kantelberg & Tim Markmann & Johannes Naumann & Carolina Honert & Marc Koch & Stephan Pauleit, 2016. "Assessing the Recreation Value of Urban Woodland Using the Ecosystem Service Approach in Two Forests in the Munich Metropolitan Region," Sustainability, MDPI, vol. 8(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuhan Shi & G. Mathias Kondolf & Dihua Li, 2018. "Urban River Transformation and the Landscape Garden City Movement in China," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    2. Ingrid Vigna & Angelo Besana & Elena Comino & Alessandro Pezzoli, 2021. "Application of the Socio-Ecological System Framework to Forest Fire Risk Management: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    3. Chien, Herlin & Saito, Osamu, 2021. "Evaluating social–ecological fit in urban stream management: The role of governing institutions in sustainable urban ecosystem service provision," Ecosystem Services, Elsevier, vol. 49(C).
    4. Aude Zingraff-Hamed & Mathieu Bonnefond & Sebastien Bonthoux & Nicolas Legay & Sabine Greulich & Amélie Robert & Vincent Rotgé & José Serrano & Yixin Cao & Raita Bala & Alvin Vazha & Rebecca E. Tharme, 2021. "Human–River Encounter Sites: Looking for Harmony between Humans and Nature in Cities," Sustainability, MDPI, vol. 13(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    5. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    6. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    7. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    8. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    9. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    10. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    11. M. G. Hutchins & M. J. Bowes, 2018. "Balancing Water Demand Needs with Protection of River Water Quality by Minimising Stream Residence Time: an Example from the Thames, UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2561-2568, May.
    12. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    13. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    14. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    15. Maria Carmela Aprile & Damiano Fiorillo, 2016. "Water Conservation Behavior and Environmental Concerns," Discussion Papers 6_2016, CRISEI, University of Naples "Parthenope", Italy.
    16. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    17. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    18. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    19. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    20. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1747-:d:149150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.