IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p974-d138215.html
   My bibliography  Save this article

Leveraging Sustainable Irrigated Agriculture via Desalination: Evidence from a Macro-Data Case Study in Israel

Author

Listed:
  • Eran Raveh

    (Department of Fruit Trees, Institute of Plant Science, Agricultural Research Organization, Gilat Research Center, Mobile Post Negev 85280, Israel)

  • Alon Ben-Gal

    (Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Gilat Research Center, Mobile Post Negev 85280, Israel)

Abstract

Israel has been a global frontrunner in (a) irrigation water application efficiency; (b) utilization of non-conventional (recycled and brackish) water supplies containing salts for irrigation; and recently (c) large-scale seawater desalination to provide water. Irrigation with water high in salts in many dry regions has been shown to be non-sustainable, mostly due to contamination of soils, subsoils, and groundwater resulting from the application and leaching of salts. We hypothesized that the move to desalination would reverse prior problematic trends of salinization and provide a path to sustainable irrigated agriculture in Israel and similar environments. To investigate effects of desalination in Israel on the status of salinity trends, we evaluated citrus leaf sodium, chloride, and magnesium in the years since the onset of large-scale national desalination in 2008 and examined fresh produce in the country for sodium and magnesium. We found remarkable reversal of previous trends until 2006, when salinity was found to rise consistently, in the recent data showing decreases of 20, 34, and 30% for Na, Cl, and Mg, respectively. A tendency for Israeli produce to be high in concentrations of salts compared to international standards was also reversed following large-scale desalination. Sodium in Israeli fresh produce is no longer much higher than that expected in equivalent sources in the USA while magnesium is lower in Israel fruits and vegetables compared to USDA standards. We present these results and trends to support the argument that desalination can allow and promote sustainable irrigated agriculture in the world’s dry areas.

Suggested Citation

  • Eran Raveh & Alon Ben-Gal, 2018. "Leveraging Sustainable Irrigated Agriculture via Desalination: Evidence from a Macro-Data Case Study in Israel," Sustainability, MDPI, vol. 10(4), pages 1-8, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:974-:d:138215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raveh, Eran & Ben-Gal, Alon, 2016. "Irrigation with water containing salts: Evidence from a macro-data national case study in Israel," Agricultural Water Management, Elsevier, vol. 170(C), pages 176-179.
    2. Ben-Gal, Alon & Ityel, Eviatar & Dudley, Lynn & Cohen, Shabtai & Yermiyahu, Uri & Presnov, Eugene & Zigmond, Leah & Shani, Uri, 2008. "Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers," Agricultural Water Management, Elsevier, vol. 95(5), pages 587-597, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallego-Elvira, B. & Reca, J. & Martin-Gorriz, B. & Maestre-Valero, J.F. & Martínez-Alvarez, V., 2021. "Irriblend-DSW: A decision support tool for the optimal blending of desalinated and conventional irrigation waters in dry regions," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    3. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Ityel, Eviatar & Ben-Gal, Alon & Silberbush, Moshe & Lazarovitch, Naftali, 2014. "Increased root zone oxygen by a capillary barrier is beneficial to bell pepper irrigated with brackish water in an arid region," Agricultural Water Management, Elsevier, vol. 131(C), pages 108-114.
    5. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Isaac Zipori & Ran Erel & Uri Yermiyahu & Alon Ben-Gal & Arnon Dag, 2020. "Sustainable Management of Olive Orchard Nutrition: A Review," Agriculture, MDPI, vol. 10(1), pages 1-21, January.
    7. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Bhantana, Parashuram & Lazarovitch, Naftali, 2010. "Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress," Agricultural Water Management, Elsevier, vol. 97(5), pages 715-722, May.
    9. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    10. Morales-Garcia, Dagobiet & Stewart, Katrine A. & Seguin, Philippe & Madramootoo, Chandra, 2011. "Supplemental saline drip irrigation applied at different growth stages of two bell pepper cultivars grown with or without mulch in non-saline soil," Agricultural Water Management, Elsevier, vol. 98(5), pages 893-898, March.
    11. Palmate, Santosh S. & Kumar, Saurav & Poulose, Thomas & Ganjegunte, Girisha K. & Chaganti, Vijayasatya N. & Sheng, Zhuping, 2022. "Comparing the effect of different irrigation water scenarios on arid region pecan orchard using a system dynamics approach," Agricultural Water Management, Elsevier, vol. 265(C).
    12. Ityel, Eviatar & Lazarovitch, Naftali & Silberbush, Moshe & Ben-Gal, Alon, 2012. "An artificial capillary barrier to improve root-zone conditions for horticultural crops: Response of pepper plants to matric head and irrigation water salinity," Agricultural Water Management, Elsevier, vol. 105(C), pages 13-20.
    13. Ali Asghar Ghaemi & Mohammad Rafie Rafiee, 2016. "Evapotranspiration and Yield of Eggplant under Salinity and Water Deficit: A Comparison between Greenhouse and Outdoor Cultivation," Modern Applied Science, Canadian Center of Science and Education, vol. 10(11), pages 1-8, November.
    14. Zainab Noreen & Muhammad Mohsin Waqas & Syed Hamid Hussain Shah, 2020. "Effect Of Irrigation Water Salinity On Transpiration And Leaching Requirement: A Case Study For Wheat Under Semiarid Environment Of Punjab," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 5-9, February.
    15. Raveh, Eran & Ben-Gal, Alon, 2016. "Irrigation with water containing salts: Evidence from a macro-data national case study in Israel," Agricultural Water Management, Elsevier, vol. 170(C), pages 176-179.
    16. Tripler, Effi & Shani, Uri & Mualem, Yechezkel & Ben-Gal, Alon, 2011. "Long-term growth, water consumption and yield of date palm as a function of salinity," Agricultural Water Management, Elsevier, vol. 99(1), pages 128-134.
    17. de Clercq, W.P. & Van Meirvenne, M. & Fey, M.V., 2009. "Prediction of the soil-depth salinity-trend in a vineyard after sustained irrigation with saline water," Agricultural Water Management, Elsevier, vol. 96(3), pages 395-404, March.
    18. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    19. Benes, S.E. & Adhikari, D.D. & Grattan, S.R. & Snyder, R.L., 2012. "Evapotranspiration potential of forages irrigated with saline-sodic drainage water," Agricultural Water Management, Elsevier, vol. 105(C), pages 1-7.
    20. Yasuor, Hagai & Tamir, Guy & Stein, Avraham & Cohen, Shabtai & Bar-Tal, Asher & Ben-Gal, Alon & Yermiyahu, Uri, 2017. "Does water salinity affect pepper plant response to nitrogen fertigation?," Agricultural Water Management, Elsevier, vol. 191(C), pages 57-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:974-:d:138215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.