IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p819-d136435.html
   My bibliography  Save this article

Parametric Assessment of Pre-Monsoon Agricultural Water Scarcity in Bangladesh

Author

Listed:
  • Sumaiya Jarin Ahammed

    (Department of Water and Environmental Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia)

  • Eun-Sung Chung

    (Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Shamsuddin Shahid

    (Department of Water and Environmental Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia)

Abstract

This study assesses the geographical distribution of agricultural water scarcity in Bangladesh in order to streamline the adaptation measures. The agricultural water scarcity was assumed to be a system with five subsystems, namely, groundwater depth, surface water availability, rainfall availability, groundwater salinity for irrigation, and surface water salinity for irrigation. The catastrophe-theory-based multi-criteria decision making approach was used for the estimation of agricultural water scarcity index from five subsystem indices. The obtained results showed that agriculture in about 6.3% of the area of the country is experiencing very high-risk water scarcity, 19.1% with high water scarcity, 37.2% with moderate water risk, and the rest is low or no risk of water scarcity for agriculture. Results showed that the western part of Bangladesh was more vulnerable to agricultural water scarcity. The analysis of the results showed that higher agriculture water scarcity in the northwest region resulted from water unavailability, and in the southwest region it was closely related to poor water quality. The severe areas of water scarcity are very similar to those that are usually regarded as water-scarce. The approach presented in this study can be used for rapid but fair assessment of water scarcity with readily available data, which can be further improved by incorporating other factors related to water scarcity.

Suggested Citation

  • Sumaiya Jarin Ahammed & Eun-Sung Chung & Shamsuddin Shahid, 2018. "Parametric Assessment of Pre-Monsoon Agricultural Water Scarcity in Bangladesh," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:819-:d:136435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang Xiao-jun & Zhang Jian-yun & Shamsuddin Shahid & Xia Xing-hui & He Rui-min & Shang Man-ting, 2014. "Catastrophe theory to assess water security and adaptation strategy in the context of environmental change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(4), pages 463-477, April.
    2. Morteza Mohsenipour & Shamsuddin Shahid & Eun-sung Chung & Xiao-jun Wang, 2018. "Changing Pattern of Droughts during Cropping Seasons of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1555-1568, March.
    3. Dasgupta, Susmita & Kamal, Farhana Akhter & Khan, Zahirul Huque & Choudhury, Sharifuzzaman & Nishat, Ainun, 2014. "River salinity and climate change : evidence from coastal Bangladesh," Policy Research Working Paper Series 6817, The World Bank.
    4. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    5. M. Monirul Qader Mirza, 2003. "Three Recent Extreme Floods in Bangladesh: A Hydro-Meteorological Analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 35-64, January.
    6. Golam Saleh Ahmed Salem & So Kazama & Daisuke Komori & Shamsuddin Shahid & Nepal C. Dey, 2017. "Optimum Abstraction of Groundwater for Sustaining Groundwater Level and Reducing Irrigation Cost," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1947-1959, April.
    7. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    2. Farzana Raihan & Gabrijel Ondrasek & Mohammad Shahidul Islam & Joseph M. Maina & Linda J. Beaumont, 2021. "Combined Impacts of Climate and Land Use Changes on Long-Term Streamflow in the Upper Halda Basin, Bangladesh," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    3. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    4. Xue Wan & Xiaoning Yang & Quaner Wen & Jun Gang & Lu Gan, 2020. "Sustainable Development of Industry–Environmental System Based on Resilience Perspective," IJERPH, MDPI, vol. 17(2), pages 1-23, January.
    5. Palash, Md Salauddin & Rahman, Md Wakilur & Amin, Md Ruhul & Mainuddin, Mohammed & Jalilov, Shokhrukh –Mirzo, 2020. "Water Stress Effect On The Factors Of Production Of Irrigated Rice In Northwest Regions Of Bangladesh," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 40(1&2), February.
    6. Md Lamiur Raihan & Kenichiro Onitsuka & Mrittika Basu & Natsuki Shimizu & Satoshi Hoshino, 2020. "Rapid Emergence and Increasing Risks of Hailstorms: A Potential Threat to Sustainable Agriculture in Northern Bangladesh," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    7. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    8. Mohamed Salem Nashwan & Shamsuddin Shahid & Eun-Sung Chung & Kamal Ahmed & Young Hoon Song, 2018. "Development of Climate-Based Index for Hydrologic Hazard Susceptibility," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    9. Tudose, Nicu Constantin & Cheval, Sorin & Ungurean, Cezar & Broekman, Annelies & Sanchez-Plaza, Anabel & Cremades, Roger & Mitter, Hermine & Kropf, Bernadette & Davidescu, Serban Octavian & Dinca, Luc, 2022. "Climate services for sustainable resource management: The water—energy—land nexus in the Tărlung river basin (Romania)," Land Use Policy, Elsevier, vol. 119(C).
    10. Baode Li & Jing Li & Jing Lu, 2019. "Research on the Coupled Risk of Key Nodes in Maritime Transport Based on Improved Catastrophe Theory," Sustainability, MDPI, vol. 11(17), pages 1-21, August.
    11. Ujjayini Priya & Muhammad Anwar Iqbal & Mohammed Abdus Salam & Md. Nur-E-Alam & Mohammed Faruque Uddin & Abu Reza Md. Towfiqul Islam & Showmitra Kumar Sarkar & Saiful Islam Imran & Aweng Eh Rak, 2022. "Sustainable Groundwater Potential Zoning with Integrating GIS, Remote Sensing, and AHP Model: A Case from North-Central Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    12. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Rachit Saxena & Sai Kranthi Vanga & Jin Wang & Valérie Orsat & Vijaya Raghavan, 2018. "Millets for Food Security in the Context of Climate Change: A Review," Sustainability, MDPI, vol. 10(7), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    2. Mahiuddin Alamgir & Morteza Mohsenipour & Rajab Homsi & Xiaojun Wang & Shamsuddin Shahid & Mohammed Sanusi Shiru & Nor Eliza Alias & Ali Yuzir, 2019. "Parametric Assessment of Seasonal Drought Risk to Crop Production in Bangladesh," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    3. Olufemi Sunday Durowoju & Temi Emmanuel Ologunorisa & Ademola Akinbobola, 2022. "Assessing agricultural and hydrological drought vulnerability in a savanna ecological zone of Sub-Saharan Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2431-2458, April.
    4. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    5. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    6. Yuichiro Yoshida & Han Soo Lee & Bui Huy Trung & Hoang-Dung Tran & Mahrjan Keshlav Lall & Kifayatullah Kakar & Tran Dang Xuan, 2020. "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    7. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    8. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    10. Guglielmo Zappalà, 2023. "Drought Exposure and Accuracy: Motivated Reasoning in Climate Change Beliefs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 649-672, August.
    11. Qiting Zuo & Yixuan Diao & Lingang Hao & Chunhui Han, 2020. "Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4019-4035, October.
    12. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    13. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    14. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2021. "Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI)," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Christian Franco-Crespo & Jose Maria Sumpsi Viñas, 2017. "The Impact of Pricing Policies on Irrigation Water for Agro-Food Farms in Ecuador," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    16. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    17. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    18. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    19. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    20. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:819-:d:136435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.