IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p8-d311524.html
   My bibliography  Save this article

Pricing of Commodity Derivatives on Processes with Memory

Author

Listed:
  • Fred Espen Benth

    (Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N-0316 Oslo, Norway
    These authors contributed equally to this work.)

  • Asma Khedher

    (Korteweg-de Vries Institute for Mathematics, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
    These authors contributed equally to this work.)

  • Michèle Vanmaele

    (Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, B-9000 Gent, Belgium
    These authors contributed equally to this work.)

Abstract

Spot option prices, forwards and options on forwards relevant for the commodity markets are computed when the underlying process S is modelled as an exponential of a process ξ with memory as, e.g., a Volterra equation driven by a Lévy process. Moreover, the interest rate and a risk premium ρ representing storage costs, illiquidity, convenience yield or insurance costs, are assumed to be stochastic. When the interest rate is deterministic and the risk premium is explicitly modelled as an Ornstein-Uhlenbeck type of dynamics with a mean level that depends on the same memory term as the commodity, the process ( ξ ; ρ ) has an affine structure under the pricing measure Q and an explicit expression for the option price is derived in terms of the Fourier transform of the payoff function.

Suggested Citation

  • Fred Espen Benth & Asma Khedher & Michèle Vanmaele, 2020. "Pricing of Commodity Derivatives on Processes with Memory," Risks, MDPI, vol. 8(1), pages 1-32, January.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:8-:d:311524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Financial markets for weather," World Scientific Book Chapters, in: Modeling and Pricing in Financial Markets for Weather Derivatives, chapter 1, pages 1-13, World Scientific Publishing Co. Pte. Ltd..
    2. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, January.
    3. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    4. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    5. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    7. Duan, Jin-Chuan & Pliska, Stanley R., 2004. "Option valuation with co-integrated asset prices," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 727-754, January.
    8. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, January.
    9. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    10. F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
    11. Paschke, Raphael & Prokopczuk, Marcel, 2010. "Commodity derivatives valuation with autoregressive and moving average components in the price dynamics," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2742-2752, November.
    12. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    13. Bernt øksendal & Tusheng Zhang, 2010. "Optimal Control with Partial Information for Stochastic Volterra Equations," International Journal of Stochastic Analysis, Hindawi, vol. 2010, pages 1-25, June.
    14. Helyette Geman, 2005. "Commodities and Commodity Derivatives. Modeling and Pricing for Agriculturals, Metals and Energy," Post-Print halshs-00144182, HAL.
    15. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    16. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    17. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    18. Kallsen, Jan & Muhle-Karbe, Johannes, 2010. "Exponentially affine martingales, affine measure changes and exponential moments of affine processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 163-181, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred Espen Benth & Asma Khedher & Mich`ele Vanmaele, 2017. "Pricing of commodity derivatives on processes with memory," Papers 1711.00307, arXiv.org.
    2. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    3. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    4. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    5. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    6. Benth, Fred Espen & Koekebakker, Steen, 2015. "Pricing of forwards and other derivatives in cointegrated commodity markets," Energy Economics, Elsevier, vol. 52(PA), pages 104-117.
    7. Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    8. Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
    9. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    10. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    12. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    13. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Dec 2023.
    14. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    15. F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.
    16. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    17. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    18. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    19. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    20. Sonja Cox & Sven Karbach & Asma Khedher, 2022. "An infinite‐dimensional affine stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 878-906, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:8-:d:311524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.