IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p14-d315997.html
   My bibliography  Save this article

Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model

Author

Listed:
  • Ioannis Badounas

    (Department of Statistics and Insurance Science, University of Piraeus, 18534 Piraeus, Greece)

  • Georgios Pitselis

    (Department of Statistics and Insurance Science, University of Piraeus, 18534 Piraeus, Greece)

Abstract

In this paper, we consider a loss reserving model for a general insurance portfolio consisting of a number of correlated run-off triangles that can be embedded within the quantile regression model for longitudinal data. The model proposes a combination of the between- and within-subportfolios (run-off triangles) estimating functions for regression parameter estimation, which take into account the correlation and variation of the run-off triangles. The proposed method is robust to the error correlation structure, improves the efficiency of parameter estimators, and is useful for the estimation of the reserve risk margin and value at risk (VaR) in actuarial and finance applications.

Suggested Citation

  • Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:14-:d:315997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2015. "Modeling Dependence Between Loss Triangles With Hierarchical Archimedean Copulas," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 577-599, September.
    2. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    3. Guosheng Yin & Jianwen Cai, 2005. "Quantile Regression Models with Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 61(1), pages 151-161, March.
    4. Di Kuang & Bent Nielsen & Jens Perch Nielsen, 2011. "Forecasting in an Extended Chain‐Ladder‐Type Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(2), pages 345-359, June.
    5. Kris Peremans & Stefan Van Aelst & Tim Verdonck, 2018. "A Robust General Multivariate Chain Ladder Method," Risks, MDPI, vol. 6(4), pages 1-18, September.
    6. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    7. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    8. Bermúdez, Lluís & Ferri, Antoni & Guillén, Montserrat, 2013. "A Correlation Sensitivity Analysis Of Non-Life Underwriting Risk In Solvency Capital Requirement Estimation," ASTIN Bulletin, Cambridge University Press, vol. 43(1), pages 21-37, January.
    9. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    10. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2018. "Common Shock Models For Claim Arrays," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1109-1136, September.
    11. Julie A. Stoner, 2002. "Analysis of clustered data: A combined estimating equations approach," Biometrika, Biometrika Trust, vol. 89(3), pages 567-578, August.
    12. Greg Taylor & Gráinne McGuire, 2007. "A Synchronous Bootstrap to Account for Dependencies Between Lines of Business in the Estimation of Loss Reserve Prediction Error," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 70-88.
    13. Zhang, Yanwei, 2010. "A general multivariate chain ladder model," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 588-599, June.
    14. Yanwei Zhang & Vanja Dukic & James Guszcza, 2012. "A Bayesian non‐linear model for forecasting insurance loss payments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 637-656, April.
    15. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    16. Roger Koenker & Vasco d'Orey, 1994. "A Remark on Algorithm as 229: Computing Dual Regression Quantiles and Regression Rank Scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(2), pages 410-414, June.
    17. Dong, Alice X.D. & Chan, Jennifer S.K. & Peters, Gareth W., 2015. "Risk Margin Quantile Function Via Parametric And Non-Parametric Bayesian Approaches," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 503-550, September.
    18. Pešta, Michal & Okhrin, Ostap, 2014. "Conditional least squares and copulae in claims reserving for a single line of business," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 28-37.
    19. Moro, Eric Dal & Krvavych, Yuriy, 2017. "Probability Of Sufficiency Of Solvency Ii Reserve Risk Margins: Practical Approximations," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 737-785, September.
    20. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2016. "Correlations Between Insurance Lines Of Business: An Illusion Or A Real Phenomenon? Some Methodological Considerations," ASTIN Bulletin, Cambridge University Press, vol. 46(2), pages 225-263, May.
    21. Pitt, D. G. W., 2006. "Regression Quantile Analysis of Claim Termination Rates for Income Protection Insurance," Annals of Actuarial Science, Cambridge University Press, vol. 1(2), pages 345-357, September.
    22. Michael Merz & Mario Wüthrich, 2008. "Prediction Error of the Multivariate Chain Ladder Reserving Method," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(2), pages 175-197.
    23. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    24. Braun, Christian, 2004. "The Prediction Error of the Chain Ladder Method Applied to Correlated Run-off Triangles," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 399-423, November.
    25. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    26. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    27. Shi, Peng & Frees, Edward W., 2011. "Dependent Loss Reserving using Copulas," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 449-486, November.
    28. Wang, You-Gan & Shao, Quanxi & Zhu, Min, 2009. "Quantile regression without the curse of unsmoothness," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3696-3705, August.
    29. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Barlak & Matus Bakon & Martin Rovnak & Martina Mokrisova, 2022. "Heat Equation as a Tool for Outliers Mitigation in Run-Off Triangles for Valuing the Technical Provisions in Non-Life Insurance Business," Risks, MDPI, vol. 10(9), pages 1-17, August.
    2. Roberto Bomgiovani Cazzari & Guilherme Rodovalho Fernandes Moreira, 2022. "Uncertainty of Claims Provisions from the Analysis of Financial Statements," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 26(3), pages 200400-2004.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    3. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    4. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    6. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    7. Yixing Zhao & Rogemar Mamon & Heng Xiong, 2021. "Claim reserving for insurance contracts in line with the International Financial Reporting Standards 17: a new paid-incurred chain approach to risk adjustments," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    8. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    9. Kris Peremans & Stefan Van Aelst & Tim Verdonck, 2018. "A Robust General Multivariate Chain Ladder Method," Risks, MDPI, vol. 6(4), pages 1-18, September.
    10. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    11. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    12. Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
    13. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    14. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    15. Peng Shi, 2017. "A Multivariate Analysis of Intercompany Loss Triangles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 717-737, June.
    16. Klaus Schmidt, 2012. "Loss prediction based on run-off triangles," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 265-310, June.
    17. Fu, Liya & Wang, You-Gan & Zhu, Min, 2015. "A Gaussian pseudolikelihood approach for quantile regression with repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 41-53.
    18. Kevin Kuo, 2019. "DeepTriangle: A Deep Learning Approach to Loss Reserving," Risks, MDPI, vol. 7(3), pages 1-12, September.
    19. Zexi Cai & Tony Sit, 2023. "On interquantile smoothness of censored quantile regression with induced smoothing," Biometrics, The International Biometric Society, vol. 79(4), pages 3549-3563, December.
    20. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:14-:d:315997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.