IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i3p67-d773925.html
   My bibliography  Save this article

An Overview on the Landscape of R Packages for Open Source Scorecard Modelling

Author

Listed:
  • Gero Szepannek

    (Institute of Applied Computer Science, Stralsund University of Applied Sciences, Zur Schwedenschanze 15, 18435 Stralsund, Germany)

Abstract

The credit scoring industry has a long tradition of using statistical models for loan default probability prediction. Since this time methodology has strongly evolved, and most of the current research is dedicated to modern machine learning algorithms which contrasts with common practice in the finance industry where traditional regression models still denote the gold standard. In addition, strong emphasis is put on a preliminary binning of variables. Reasons for this may be not only the regulatory requirement of model comprehensiveness but also the possibility to integrate analysts’ expert knowledge in the modelling process. Although several commercial software companies offer specific solutions for modelling credit scorecards, open-source frameworks for this purpose have been missing for a long time. In recent years, this has changed, and today several R packages for credit scorecard modelling are available. This brings the potential to bridge the gap between academic research and industrial practice. The aim of this paper is to give a structured overview of these packages. It may guide users to select the appropriate functions for the desired purpose. Furthermore, this paper will hopefully contribute to future development activities.

Suggested Citation

  • Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:3:p:67-:d:773925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/3/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/3/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. G Verstraeten & D Van den Poel, 2005. "The impact of sample bias on consumer credit scoring performance and profitability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 981-992, August.
    3. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    4. Steven Finlay, 2012. "Credit Scoring, Response Modeling, and Insurance Rating," Palgrave Macmillan Books, Palgrave Macmillan, edition 0, number 978-1-137-03169-3.
    5. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    6. Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), 2016. "Operations Research Proceedings 2014," Operations Research Proceedings, Springer, edition 1, number 978-3-319-28697-6, March.
    7. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405.
    8. Verbraken, Thomas & Bravo, Cristián & Weber, Richard & Baesens, Bart, 2014. "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research, Elsevier, vol. 238(2), pages 505-513.
    9. Banasik, John & Crook, Jonathan, 2007. "Reject inference, augmentation, and sample selection," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1582-1594, December.
    10. Adrien Ehrhardt & Christophe Biernacki & Vincent Vandewalle & Philippe Heinrich, 2019. "Feature quantization for parsimonious and interpretable predictive models," Papers 1903.08920, arXiv.org.
    11. Bücker, Michael & van Kampen, Maarten & Krämer, Walter, 2013. "Reject inference in consumer credit scoring with nonignorable missing data," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1040-1045.
    12. Michael Bücker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2022. "Transparency, auditability, and explainability of machine learning models in credit scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 70-90, January.
    13. Chavent, Marie & Kuentz-Simonet, Vanessa & Liquet, Benoît & Saracco, Jérôme, 2012. "ClustOfVar: An R Package for the Clustering of Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i13).
    14. Crook, Jonathan & Banasik, John, 2004. "Does reject inference really improve the performance of application scoring models?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 857-874, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monir El Annas & Badreddine Benyacoub & Mohamed Ouzineb, 2023. "Semi-supervised adapted HMMs for P2P credit scoring systems with reject inference," Computational Statistics, Springer, vol. 38(1), pages 149-169, March.
    2. Rogelio A. Mancisidor & Michael Kampffmeyer & Kjersti Aas & Robert Jenssen, 2019. "Deep Generative Models for Reject Inference in Credit Scoring," Papers 1904.11376, arXiv.org, revised Sep 2021.
    3. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
    4. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    5. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    6. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    7. Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
    8. Karol Przanowski, 2014. "Credit acceptance process strategy case studies - the power of Credit Scoring," Papers 1403.6531, arXiv.org.
    9. Ha Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," Working Papers hal-04141601, HAL.
    10. Silva, Diego M.B. & Pereira, Gustavo H.A. & Magalhães, Tiago M., 2022. "A class of categorization methods for credit scoring models," European Journal of Operational Research, Elsevier, vol. 296(1), pages 323-331.
    11. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    12. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
    13. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    14. Shen, Feng & Zhang, Xin & Wang, Run & Lan, Dao & Zhou, Wei, 2022. "Sequential optimization three-way decision model with information gain for credit default risk evaluation," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1116-1128.
    15. Kozodoi, Nikita & Jacob, Johannes & Lessmann, Stefan, 2022. "Fairness in credit scoring: Assessment, implementation and profit implications," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1083-1094.
    16. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    17. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    18. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    19. Maldonado, Sebastián & Pérez, Juan & Bravo, Cristián, 2017. "Cost-based feature selection for Support Vector Machines: An application in credit scoring," European Journal of Operational Research, Elsevier, vol. 261(2), pages 656-665.
    20. J Banasik & J Crook, 2010. "Reject inference in survival analysis by augmentation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 473-485, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:3:p:67-:d:773925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.