IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i7p790-d530937.html
   My bibliography  Save this article

Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications

Author

Listed:
  • Yong Zhang

    (Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA)

  • Dongbao Zhou

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Mechanics and Materials, Hohai University, Nanjing 210098, China)

  • Wei Wei

    (School of Environment, Nanjing Normal University, Nanjing 210023, China)

  • Jonathan M. Frame

    (Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA)

  • Hongguang Sun

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Mechanics and Materials, Hohai University, Nanjing 210098, China)

  • Alexander Y. Sun

    (Bureau of Economic Geology, Jackson School of Geosciences, University of Texas Austin, Austin, TX 78713, USA)

  • Xingyuan Chen

    (Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, WA 99352, USA)

Abstract

Fractional calculus-based differential equations were found by previous studies to be promising tools in simulating local-scale anomalous diffusion for pollutants transport in natural geological media (geomedia), but efficient models are still needed for simulating anomalous transport over a broad spectrum of scales. This study proposed a hierarchical framework of fractional advection-dispersion equations (FADEs) for modeling pollutants moving in the river corridor at a full spectrum of scales. Applications showed that the fixed-index FADE could model bed sediment and manganese transport in streams at the geomorphologic unit scale, whereas the variable-index FADE well fitted bedload snapshots at the reach scale with spatially varying indices. Further analyses revealed that the selection of the FADEs depended on the scale, type of the geomedium (i.e., riverbed, aquifer, or soil), and the type of available observation dataset (i.e., the tracer snapshot or breakthrough curve (BTC)). When the pollutant BTC was used, a single-index FADE with scale-dependent parameters could fit the data by upscaling anomalous transport without mapping the sub-grid, intermediate multi-index anomalous diffusion. Pollutant transport in geomedia, therefore, may exhibit complex anomalous scaling in space (and/or time), and the identification of the FADE’s index for the reach-scale anomalous transport, which links the geomorphologic unit and watershed scales, is the core for reliable applications of fractional calculus in hydrology.

Suggested Citation

  • Yong Zhang & Dongbao Zhou & Wei Wei & Jonathan M. Frame & Hongguang Sun & Alexander Y. Sun & Xingyuan Chen, 2021. "Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications," Mathematics, MDPI, vol. 9(7), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:790-:d:530937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/7/790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/7/790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersson, Martin & Yuan, Jinliang & Sundén, Bengt, 2010. "Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells," Applied Energy, Elsevier, vol. 87(5), pages 1461-1476, May.
    2. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Sokolov & Irina Nikulina, 2022. "Choice of Regularization Methods in Experiment Processing: Solving Inverse Problems of Thermal Conductivity," Mathematics, MDPI, vol. 10(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    2. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    3. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    4. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    5. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    6. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    7. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    8. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Wang, Baoxuan & Zhu, Jiang & Lin, Zijing, 2016. "A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics," Applied Energy, Elsevier, vol. 176(C), pages 1-11.
    10. Paola Costamagna & Simone Grosso & Rowland Travis & Loredana Magistri, 2015. "Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data," Energies, MDPI, vol. 8(11), pages 1-24, November.
    11. Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
    12. Razbani, Omid & Wærnhus, Ivar & Assadi, Mohsen, 2013. "Experimental investigation of temperature distribution over a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 155-160.
    13. Chaoyu Liang & Chao Yang & Jiatang Wang & Peijian Lin & Xinke Li & Xuyang Wu & Jinliang Yuan, 2020. "Sintering Process and Effects on LST and LST-GDC Particles Simulated by Molecular Dynamics Modeling Method," Energies, MDPI, vol. 13(16), pages 1-18, August.
    14. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    15. Li, Zheng & Zhang, Hao & Xu, Haoran & Xuan, Jin, 2021. "Advancing the multiscale understanding on solid oxide electrolysis cells via modelling approaches: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2023. "A computational numerical algorithm for thermal characterization of fractional unsteady free convection flow in an open cavity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    17. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2022. "An efficient numerical scheme for fractional characterization of MHD fluid model," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Choi, Indae & Kim, Jung-Sik & Venkatesan, Vijay & Ranaweera, Manoj, 2017. "Fabrication and evaluation of a novel wavy Single Chamber Solid Oxide Fuel Cell via in-situ monitoring of curvature evolution," Applied Energy, Elsevier, vol. 195(C), pages 1038-1046.
    19. Putilov, L.P. & Demin, A.K. & Tsidilkovski, V.I. & Tsiakaras, P., 2019. "Theoretical modeling of the gas humidification effect on the characteristics of proton ceramic fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 1448-1459.
    20. Calise, Francesco & Figaj, Rafal Damian & Massarotti, Nicola & Mauro, Alessandro & Vanoli, Laura, 2017. "Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis," Applied Energy, Elsevier, vol. 192(C), pages 530-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:790-:d:530937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.