IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3003-d686149.html
   My bibliography  Save this article

A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study

Author

Listed:
  • Jurgita Arnastauskaitė

    (Department of Applied Mathematics, Kaunas University of Technology, 51368 Kaunas, Lithuania
    Department of Computer Sciences, Kaunas University of Technology, 51368 Kaunas, Lithuania)

  • Tomas Ruzgas

    (Department of Computer Sciences, Kaunas University of Technology, 51368 Kaunas, Lithuania)

  • Mindaugas Bražėnas

    (Department of Mathematical Modelling, Kaunas University of Technology, 51368 Kaunas, Lithuania)

Abstract

The testing of multivariate normality remains a significant scientific problem. Although it is being extensively researched, it is still unclear how to choose the best test based on the sample size, variance, covariance matrix and others. In order to contribute to this field, a new goodness of fit test for multivariate normality is introduced. This test is based on the mean absolute deviation of the empirical distribution density from the theoretical distribution density. A new test was compared with the most popular tests in terms of empirical power. The power of the tests was estimated for the selected alternative distributions and examined by the Monte Carlo modeling method for the chosen sample sizes and dimensions. Based on the modeling results, it can be concluded that a new test is one of the most powerful tests for checking multivariate normality, especially for smaller samples. In addition, the assumption of normality of two real data sets was checked.

Suggested Citation

  • Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3003-:d:686149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    2. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    3. J. P. Royston, 1982. "An Extension of Shapiro and Wilk's W Test for Normality to Large Samples," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 115-124, June.
    4. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    5. Lobato, Ignacio N. & Velasco, Carlos, 2004. "A Simple Test Of Normality For Time Series," Econometric Theory, Cambridge University Press, vol. 20(4), pages 671-689, August.
    6. Vassilly Voinov & Natalie Pya & Rashid Makarov & Yevgeniy Voinov, 2016. "New invariant and consistent chi-squared type goodness-of-fit tests for multivariate normality and a related comparative simulation study," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(11), pages 3249-3263, June.
    7. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    8. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    9. Bruno Ebner & Norbert Henze, 2020. "Rejoinder on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 911-913, December.
    10. Ming Zhou & Yongzhao Shao, 2014. "A powerful test for multivariate normality," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 351-363, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Sanei & Farhad Hosseinzadeh lotfi & Mohammad Fallah & Farzad Movahedi Sobhani, 2022. "An Estimation of an Acceptable Efficiency Frontier Having an Optimum Resource Management Approach, with a Combination of the DEA-ANN-GA Technique (A Case Study of Branches of an Insurance Company)," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
    2. Nour Mohamad Fayad, 2024. "The Causality Between Corruption and Economic Growth in MENA Countries: A Dynamic Panel-Data Analysis," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 14(1), pages 28-49.
    3. Atif Avdović & Vesna Jevremović, 2022. "Quantile-Zone Based Approach to Normality Testing," Mathematics, MDPI, vol. 10(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    2. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    3. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    4. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    5. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    7. Chowdhury, Joydeep & Dutta, Subhajit & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2022. "Sub-dimensional Mardia measures of multivariate skewness and kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    8. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    9. Minguez, Ana & Javier Sese, F., 2022. "Why do you want a relationship, anyway? Consent to receive marketing communications and donors’ willingness to engage with nonprofits," Journal of Business Research, Elsevier, vol. 148(C), pages 356-367.
    10. Lauren Bin Dong & David E. A. Giles, 2004. "An Empirical Likelihood Ratio Test for Normality," Econometrics Working Papers 0401, Department of Economics, University of Victoria.
    11. Wangli Xu & Yanwen Li & Dawo Song, 2013. "Testing normality in mixed models using a transformation method," Statistical Papers, Springer, vol. 54(1), pages 71-84, February.
    12. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    13. Alfonso García-Pérez, 2021. "New Robust Cross-Variogram Estimators and Approximations of Their Distributions Based on Saddlepoint Techniques," Mathematics, MDPI, vol. 9(7), pages 1-21, April.
    14. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    15. Tanya Araujo & João Dias & Samuel Eleutério & Francisco Louçã, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Working Papers Department of Economics 2012/21, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    16. Donghang Luo & Ke Zhu & Huan Gong & Dong Li, 2020. "Testing error distribution by kernelized Stein discrepancy in multivariate time series models," Papers 2008.00747, arXiv.org.
    17. Horváth, Lajos & Kokoszka, Piotr & Wang, Shixuan, 2020. "Testing normality of data on a multivariate grid," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    18. Ebner, Bruno, 2012. "Asymptotic theory for the test for multivariate normality by Cox and Small," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 368-379.
    19. Tanya Ara'ujo & Jo~ao Dias & Samuel Eleut'erio & Francisco Louc{c}~a, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Papers 1207.1202, arXiv.org.
    20. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3003-:d:686149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.