IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i13p1525-d584724.html
   My bibliography  Save this article

On the Verification of the Pedestrian Evacuation Model

Author

Listed:
  • Petr Kubera

    (Faculty of Science, Jan Evangelista Purkyně University, České Mládeže 8, 400 96 Ústí nad Labem, Czech Republic
    These authors contributed equally to this work.)

  • Jiří Felcman

    (Faculty of Mathematics and Physics, Charles University Prague, Sokolovská 83, 186 75 Praha, Czech Republic
    These authors contributed equally to this work.)

Abstract

In this article we deal with numerical solution of macroscopic models of pedestrian movement. From a macroscopic point of view, pedestrian movement can be described by a system of first order hyperbolic equations similar to 2D compressible inviscid flow. For the Pedestrian Flow Equations (PFEs) the density ρ and the velocity v are considered as the unknown variables. In PFEs, the social force is also taken into account, which replaces the outer volume force term used in the fluid flow formulation, e.g., the pedestrian movement is influenced by the proximity of other pedestrians. To be concrete, the desired direction μ of the pedestrian movement is density dependent and is incorporated in the source term. The system of fluid dynamics equations is thus coupled with the equation for μ . The main message of this paper is the verification of this model. Firstly, we propose two approaches for the source term discretization. Secondly, we propose two splitting schemes for the numerical solution of the coupled system. This leads us to four different numerical methods for the PFEs. The novelty of this work is the comparative study of the numerical solutions, which shows, that all proposed methods are in the good agreement.

Suggested Citation

  • Petr Kubera & Jiří Felcman, 2021. "On the Verification of the Pedestrian Evacuation Model," Mathematics, MDPI, vol. 9(13), pages 1-23, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1525-:d:584724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/13/1525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/13/1525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Rong & Fu, Zhijian & Schadschneider, Andreas & Wen, Qiuping & Chen, Junmin & Liu, Shaobo, 2019. "Modeling the effect of visibility on upstairs crowd evacuation by a stochastic FFCA model with finer discretization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    2. Jiang, Yan-qun & Zhang, Peng & Wong, S.C. & Liu, Ru-xun, 2010. "A higher-order macroscopic model for pedestrian flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4623-4635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Lin & Long Cheng & Shuo Zhang & Qianling Wang, 2023. "Simulating the Effects of Gate Machines on Crowd Traffic Based on the Modified Social Force Model," Mathematics, MDPI, vol. 11(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Yu & Huo, Feizhou, 2021. "An agent-based model for staircase evacuation considering agent’s rotational behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    2. Xie, Chuan-Zhi & Tang, Tie-Qiao & Hu, Peng-Cheng & Chen, Liang, 2022. "Observation and cellular-automaton based modeling of pedestrian behavior on an escalator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    4. Shunqiang Ye & Lu Wang & Kang Hao Cheong & Nenggang Xie, 2017. "Pedestrian Group-Crossing Behavior Modeling and Simulation Based on Multidimensional Dirty Faces Game," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    5. Jiang, Yan-Qun & Hu, Ying-Gang & Huang, Xiaoqian, 2022. "Modeling pedestrian flow through a bottleneck based on a second-order continuum model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Zhao, Ruifeng & Zhai, Yue & Qu, Lu & Wang, Ruhao & Huang, Yaoying & Dong, Qi, 2021. "A continuous floor field cellular automata model with interaction area for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    7. Huang, Rong & Zhao, Xuan & Yuan, Yufei & Yu, Qiang & Zhou, Chenyu & Daamen, Winnie, 2021. "Experimental study on evacuation behaviour of passengers in a high-deck coach: A Chinese case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    8. He, Mengchen & Wang, Qiao & Chen, Juan & Xu, Shiwei & Ma, Jian, 2023. "Modeling pedestrian walking behavior in the flow field with moving walkways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    9. Liang, Haoyang & Du, Jie & Wong, S.C., 2021. "A Continuum model for pedestrian flow with explicit consideration of crowd force and panic effects," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 100-117.
    10. Mollier, Stéphane & Delle Monache, Maria Laura & Canudas-de-Wit, Carlos & Seibold, Benjamin, 2019. "Two-dimensional macroscopic model for large scale traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 309-326.
    11. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    12. Goldsztein, Guillermo H., 2017. "Crowd of individuals walking in opposite directions. A toy model to study the segregation of the group into lanes of individuals moving in the same direction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 162-173.
    13. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 101-116.
    15. Jiang, Yan-Qun & Zhou, Shu-Guang & Tian, Fang-Bao, 2015. "A higher-order macroscopic model for bi-direction pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 69-78.
    16. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
    17. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 99-118.
    18. Fu, Zhijian & Xiong, Xingwen & Luo, Lin & Yang, Yunjia & Feng, Yujing & Chen, Hua, 2022. "Influence of rotation on pedestrian flow considering bipedal features: Modeling using a fine discrete floor field cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1525-:d:584724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.