IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p595-d1340338.html
   My bibliography  Save this article

Statistical Depth in Spatial Point Process

Author

Listed:
  • Xinyu Zhou

    (Department of Statistics, Florida State University, Tallahassee, FL 32306, USA)

  • Wei Wu

    (Department of Statistics, Florida State University, Tallahassee, FL 32306, USA)

Abstract

Statistical depth is widely used as a powerful tool to measure the center-outward rank of multivariate and functional data. Recent studies have introduced the notion of depth to the temporal point process, which exhibits randomness in the cardinality as well as distribution in the observed events. The proposed methods can well capture the rank of a point process in a given time interval, where a critical step is to measure the rank by using inter-arrival events. In this paper, we propose to extend the depth concept to multivariate spatial point process. In this case, the observed process is in a multi-dimensional location and there are no conventional inter-arrival events in the temporal process. We adopt the newly developed depth in metric space by defining two different metrics, namely the penalized metric and the smoothing metric, to fully explore the depth in the spatial point process. The mathematical properties and the large sample theory, as well as depth-based hypothesis testings, are thoroughly discussed. We then use several simulations to illustrate the effectiveness of the proposed depth method. Finally, we apply the new method in a real-world dataset and obtain desirable ranking performance.

Suggested Citation

  • Xinyu Zhou & Wei Wu, 2024. "Statistical Depth in Spatial Point Process," Mathematics, MDPI, vol. 12(4), pages 1-20, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:595-:d:1340338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    2. Jun Li & Juan A. Cuesta-Albertos & Regina Y. Liu, 2012. "DD -Classifier: Nonparametric Classification Procedure Based on DD -Plot," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 737-753, June.
    3. Rasmus Waagepetersen & Yongtao Guan, 2009. "Two‐step estimation for inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 685-702, June.
    4. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    5. Yongtao Guan, 2008. "A KPSS Test for Stationarity for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 64(3), pages 800-806, September.
    6. Frederic Paik Schoenberg, 2004. "Testing Separability in Spatial-Temporal Marked Point Processes," Biometrics, The International Biometric Society, vol. 60(2), pages 471-481, June.
    7. Mark Berman, 1986. "Testing for Spatial Association between a Point Process and Another Stochastic Process," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 35(1), pages 54-62, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    2. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    3. Stanislav Nagy, 2021. "Halfspace depth does not characterize probability distributions," Statistical Papers, Springer, vol. 62(3), pages 1135-1139, June.
    4. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    5. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    6. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    7. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    8. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    9. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    10. Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
    11. Oleksii Pokotylo & Karl Mosler, 2019. "Classification with the pot–pot plot," Statistical Papers, Springer, vol. 60(3), pages 903-931, June.
    12. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    13. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    14. Daniel Hlubinka & Irène Gijbels & Marek Omelka & Stanislav Nagy, 2015. "Integrated data depth for smooth functions and its application in supervised classification," Computational Statistics, Springer, vol. 30(4), pages 1011-1031, December.
    15. Zhang, Tonglin & Zhuang, Run, 2017. "Testing proportionality between the first-order intensity functions of spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 72-82.
    16. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
    17. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    18. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    19. Albarrán Lozano, Irene & Alonso González, Pablo & Arribas Gil, Ana, 2013. "Dependency evolution in Spanish disabled population : a functional data analysis approach," DES - Working Papers. Statistics and Econometrics. WS ws130403, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:595-:d:1340338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.