IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2753-d1173538.html
   My bibliography  Save this article

Bayesian Latent Class Analysis: Sample Size, Model Size, and Classification Precision

Author

Listed:
  • Diana Mindrila

    (Department of Leadership, Research, and School Improvement, University of West Georgia, Carrollton, GA 30112, USA)

Abstract

The current literature includes limited information on the classification precision of Bayes estimation for latent class analysis (BLCA). (1) Objectives: The present study compared BLCA with the robust maximum likelihood (MLR) procedure, which is the default procedure with the M plus 8.0 software. (2) Method: Markov chain Monte Carlo simulations were used to estimate two-, three-, and four-class models measured by four binary observed indicators with samples of 1000, 750, 500, 250, 100, and 75 observations, respectively. With each sample, the number of replications was 500, and entropy and average latent class probabilities for most likely latent class membership were recorded. (3) Results: Bayes entropy values were more stable and ranged between 0.644 and 1. Bayes’ average latent class probabilities ranged between 0.528 and 1. MLR entropy values ranged between 0.552 and 0.958. and MLR average latent class probabilities ranged between 0.539 and 0.993. With the two-class model, BLCA outperformed MLR with all sample sizes. With the three-class model, BLCA had higher classification precision with the 75-sample size, whereas MLR performed slightly better with the 750- and 1000-sample sizes. With the 4-class model, BLCA underperformed MLR and had an increased number of unsuccessful computations, particularly with smaller samples.

Suggested Citation

  • Diana Mindrila, 2023. "Bayesian Latent Class Analysis: Sample Size, Model Size, and Classification Precision," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2753-:d:1173538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    2. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    3. Sik-Yum Lee, 1981. "A bayesian approach to confirmatory factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 46(2), pages 153-160, June.
    4. Zoubin Ghahramani, 2015. "Probabilistic machine learning and artificial intelligence," Nature, Nature, vol. 521(7553), pages 452-459, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena A. Erosheva & S. McKay Curtis, 2017. "Dealing with Reflection Invariance in Bayesian Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 295-307, June.
    2. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "State Space Approach to Adaptive Artificial Intelligence Modeling: Application to Financial Portfolio with Fuzzy System," CARF F-Series CARF-F-422, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Julian Aichholzer & Sylvia Kritzinger & Carolina Plescia, 2021. "National identity profiles and support for the European Union," European Union Politics, , vol. 22(2), pages 293-315, June.
    4. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    5. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    6. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    7. Jacky C. K. Ng & Joanne Y. H. Chong & Hilary K. Y. Ng, 2023. "The way I see the world, the way I envy others: a person-centered investigation of worldviews and the malicious and benign forms of envy among adolescents and adults," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    8. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    9. Arman Oganisian & Nandita Mitra & Jason A. Roy, 2021. "A Bayesian nonparametric model for zero‐inflated outcomes: Prediction, clustering, and causal estimation," Biometrics, The International Biometric Society, vol. 77(1), pages 125-135, March.
    10. Gillian C. Williams & Karen A. Patte & Mark A. Ferro & Scott T. Leatherdale, 2021. "Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students," IJERPH, MDPI, vol. 18(19), pages 1-14, October.
    11. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    12. Yi, Jing & Canning, Patrick N. & Ge, Houtian & Rehkamp, Sarah & Gomez, Miguel I., 2023. "A national database of highly perishable fresh produce production with temporal and spatial resolution," 2023 Annual Meeting, July 23-25, Washington D.C. 335590, Agricultural and Applied Economics Association.
    13. Mélissa Lemoine & Gerhard Gmel & Simon Foster & Simon Marmet & Joseph Studer, 2020. "Multiple trajectories of alcohol use and the development of alcohol use disorder: Do Swiss men mature-out of problematic alcohol use during emerging adulthood?," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    14. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    15. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    16. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    17. Rufo, M.J. & Pérez, C.J. & Martín, J., 2009. "Local parametric sensitivity for mixture models of lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1238-1244.
    18. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
    20. Andrew Clark & Fabien Postel-Vinay, 2009. "Job security and job protection," Oxford Economic Papers, Oxford University Press, vol. 61(2), pages 207-239, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2753-:d:1173538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.