IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1384-d798027.html
   My bibliography  Save this article

Elite Directed Particle Swarm Optimization with Historical Information for High-Dimensional Problems

Author

Listed:
  • Qiang Yang

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Yuanpeng Zhu

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Xudong Gao

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Dongdong Xu

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Zhenyu Lu

    (School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

High-dimensional optimization problems are ubiquitous in every field nowadays, which seriously challenge the optimization ability of existing optimizers. To solve this kind of optimization problems effectively, this paper proposes an elite-directed particle swarm optimization (EDPSO) with historical information to explore and exploit the high-dimensional solution space efficiently. Specifically, in EDPSO, the swarm is first separated into two exclusive sets based on the Pareto principle (80-20 rule), namely the elite set containing the top best 20% of particles and the non-elite set consisting of the remaining 80% of particles. Then, the non-elite set is further separated into two layers with the same size from the best to the worst. As a result, the swarm is divided into three layers. Subsequently, particles in the third layer learn from those in the first two layers, while particles in the second layer learn from those in the first layer, on the condition that particles in the first layer remain unchanged. In this way, the learning effectiveness and the learning diversity of particles could be largely promoted. To further enhance the learning diversity of particles, we maintain an additional archive to store obsolete elites, and use the predominant elites in the archive along with particles in the first two layers to direct the update of particles in the third layer. With these two mechanisms, the proposed EDPSO is expected to compromise search intensification and diversification well at the swarm level and the particle level, to explore and exploit the solution space. Extensive experiments are conducted on the widely used CEC’2010 and CEC’2013 high-dimensional benchmark problem sets to validate the effectiveness of the proposed EDPSO. Compared with several state-of-the-art large-scale algorithms, EDPSO is demonstrated to achieve highly competitive or even much better performance in tackling high-dimensional problems.

Suggested Citation

  • Qiang Yang & Yuanpeng Zhu & Xudong Gao & Dongdong Xu & Zhenyu Lu, 2022. "Elite Directed Particle Swarm Optimization with Historical Information for High-Dimensional Problems," Mathematics, MDPI, vol. 10(9), pages 1-29, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1384-:d:798027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. R. E. H. Bouchekara, 2020. "Most Valuable Player Algorithm: a novel optimization algorithm inspired from sport," Operational Research, Springer, vol. 20(1), pages 139-195, March.
    2. Goh, C.K. & Tan, K.C. & Liu, D.S. & Chiam, S.C., 2010. "A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design," European Journal of Operational Research, Elsevier, vol. 202(1), pages 42-54, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian-Tian Wang & Qiang Yang & Xu-Dong Gao, 2023. "Dual Elite Groups-Guided Differential Evolution for Global Numerical Optimization," Mathematics, MDPI, vol. 11(17), pages 1-51, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    2. Liu, Ruochen & Li, Jianxia & fan, Jing & Mu, Caihong & Jiao, Licheng, 2017. "A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1028-1051.
    3. Steven D. Silver, 2018. "Multivariate methodology for discriminating market segments in urban commuting," Public Transport, Springer, vol. 10(1), pages 63-89, May.
    4. Suprava Chakraborty & Devaraj Elangovan & Padma Lakshmi Govindarajan & Mohamed F. ELnaggar & Mohammed M. Alrashed & Salah Kamel, 2022. "A Comprehensive Review of Path Planning for Agricultural Ground Robots," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    5. Labiba Noshin Asha & Arup Dey & Nita Yodo & Lucy G. Aragon, 2022. "Optimization Approaches for Multiple Conflicting Objectives in Sustainable Green Supply Chain Management," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    6. Kristina Yancey Spencer & Pavel V. Tsvetkov & Joshua J. Jarrell, 2019. "A greedy memetic algorithm for a multiobjective dynamic bin packing problem for storing cooling objects," Journal of Heuristics, Springer, vol. 25(1), pages 1-45, February.
    7. Lin, Qiuzhen & Li, Jianqiang & Du, Zhihua & Chen, Jianyong & Ming, Zhong, 2015. "A novel multi-objective particle swarm optimization with multiple search strategies," European Journal of Operational Research, Elsevier, vol. 247(3), pages 732-744.
    8. Neungmatcha, Woraya, 2016. "Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operationsAuthor-Name: Sethanan, Kanchana," European Journal of Operational Research, Elsevier, vol. 252(3), pages 969-984.
    9. Sahinkoc, H. Mert & Bilge, Ümit, 2022. "A reference set based many-objective co-evolutionary algorithm with an application to the knapsack problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 405-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1384-:d:798027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.