IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4282-d974140.html
   My bibliography  Save this article

Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization

Author

Listed:
  • Yan Zhang

    (School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Jiyuan Tao

    (Department of Mathematics and Statistics, Loyola University Maryland, Baltimore, MD 21210, USA)

  • Zhixiang Yin

    (School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Guoqiang Wang

    (School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract

The estimation of the covariance matrix is an important topic in the field of multivariate statistical analysis. In this paper, we propose a new estimator, which is a convex combination of the linear shrinkage estimation and the rotation-invariant estimator under the Frobenius norm. We first obtain the optimal parameters by using grid search and cross-validation, and then, we use these optimal parameters to demonstrate the effectiveness and robustness of the proposed estimation in the numerical simulations. Finally, in empirical research, we apply the covariance matrix estimation to the portfolio optimization. Compared to the existing estimators, we show that the proposed estimator has better performance and lower out-of-sample risk in portfolio optimization.

Suggested Citation

  • Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4282-:d:974140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Olivier Ledoit & Michael Wolf, 2022. "The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation [Design-Free Estimation of Variance Matrices]," Journal of Financial Econometrics, Oxford University Press, vol. 20(1), pages 187-218.
    3. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    4. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    5. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    6. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    7. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    8. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    9. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    10. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    11. Adam J. Rothman, 2012. "Positive definite estimators of large covariance matrices," Biometrika, Biometrika Trust, vol. 99(3), pages 733-740.
    12. Joel Bun & Romain Allez & Jean-Philippe Bouchaud & Marc Potters, 2015. "Rotational invariant estimator for general noisy matrices," Papers 1502.06736, arXiv.org, revised Oct 2016.
    13. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    14. Lingzhou Xue & Shiqian Ma & Hui Zou, 2012. "Positive-Definite ℓ 1 -Penalized Estimation of Large Covariance Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1480-1491, December.
    15. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    16. Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
    17. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Shuo Zhang & Wei Zhang, 2023. "Applied Computing and Artificial Intelligence," Mathematics, MDPI, vol. 11(10), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    2. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    3. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    4. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    5. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    6. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    8. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    9. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    10. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    11. Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2018. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Working Paper Series of the Department of Economics, University of Konstanz 2018-07, Department of Economics, University of Konstanz.
    12. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    13. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    14. Shaoxin Wang & Hu Yang & Chaoli Yao, 2019. "On the penalized maximum likelihood estimation of high-dimensional approximate factor model," Computational Statistics, Springer, vol. 34(2), pages 819-846, June.
    15. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    16. Zhonghui Zhang & Huarui Jing & Chihwa Kao, 2023. "High-Dimensional Distributionally Robust Mean-Variance Efficient Portfolio Selection," Mathematics, MDPI, vol. 11(5), pages 1-16, March.
    17. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
    18. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).
    19. Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
    20. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4282-:d:974140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.