IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3915-d949699.html
   My bibliography  Save this article

A Review of Methods, and Analytical and Experimental Studies on the Use of Coal–Water Suspensions

Author

Listed:
  • Konstantin Osintsev

    (Department of Energy and Power Engineering, Institute of Engineering and Technology, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Sergei Aliukov

    (Department of Automotive Engineering, Institute of Engineering and Technology, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

  • Anatoliy Alabugin

    (Department of Digital Economy and Information Technology, School of Economics and Management, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia)

Abstract

Research in the field of building mathematical models for combustion processes has been ongoing ever since the chemical reactions of combustion were first discovered. The authors of this review have systematized mathematical models of coal–water suspension (CWS) combustion processes, the sequence of analytical and experimental studies, and have also shown the global genesis of the CWS use. In addition, this review touches upon a topic that is inextricably linked with the combustion of CWS, namely their transportation from the place of coal mining to their place of thermal utilization. For developing countries, their own energy independence is in the foreground, as it is the basis for their economic independence and also a means for other sectors of their economy to be protected from the impact of market changes in fuel prices in the future spot world market. The authors of this review explored the possibility of using Kyrgyz brown coal and transporting it through a coal pipeline from a mountainous area to an industrial site for thermal utilization in specialized steam boiler units. As the economic analysis showed, for the conditions of the Republic of Kyrgyzstan, the use of CWS and coal pipelines with rising prices for natural gas is economically justified. The recommendations of the authors are used in scientific reports and methodological recommendations for the energy and mining sectors of the Republic of Kyrgyzstan, how the recommendations can also be applied to similar conditions in the highlands of Russia, China, and India.

Suggested Citation

  • Konstantin Osintsev & Sergei Aliukov & Anatoliy Alabugin, 2022. "A Review of Methods, and Analytical and Experimental Studies on the Use of Coal–Water Suspensions," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3915-:d:949699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Dedi & Liu, Jianzhong & Wang, Shuangni & Cheng, Jun, 2020. "Study on coal water slurries prepared from coal chemical wastewater and their industrial application," Applied Energy, Elsevier, vol. 268(C).
    2. Jianzhong, Liu & Ruikun, Wang & Jianfei, Xi & Junhu, Zhou & Kefa, Cen, 2014. "Pilot-scale investigation on slurrying, combustion, and slagging characteristics of coal slurry fuel prepared using industrial wasteliquid," Applied Energy, Elsevier, vol. 115(C), pages 309-319.
    3. Bo Li & Li Li & Laisheng Huang & Xiaoquan Lv, 2021. "The Temperature Field Evolution and Water Migration Law of Coal under Low-Temperature Freezing Conditions," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Dorokhov & Geniy Kuznetsov & Galina Nyashina, 2022. "Combustion of Coal and Coal Slime in Steam-Air Environment and in Slurry Form," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Misyura, S.Y., 2019. "Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation," Energy, Elsevier, vol. 181(C), pages 589-602.
    3. Vershinina, Ksenia Yu & Kuznetsov, Genii V. & Strizhak, Pavel A., 2017. "Sawdust as ignition intensifier of coal water slurries containing petrochemicals," Energy, Elsevier, vol. 140(P1), pages 69-77.
    4. Antonov, Dmitri V. & Valiullin, Timur R. & Iegorov, Roman I. & Strizhak, Pavel A., 2017. "Effect of macroscopic porosity onto the ignition of the waste-derived fuel droplets," Energy, Elsevier, vol. 119(C), pages 1152-1158.
    5. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    6. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Ren, Yangguang & Xu, Zhiqiang & Gu, Suqian, 2022. "Physicochemical properties and slurry ability changes of lignite after microwave upgrade with the assist of lignite semi-coke," Energy, Elsevier, vol. 252(C).
    8. Mao, Lirui & Zheng, Mingdong & Li, Hanxu, 2023. "Acceleration effect of BDO tar on coal water slurry during co-gasification," Energy, Elsevier, vol. 262(PA).
    9. Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
    10. Ren, Yangguang & Lv, Ziqi & Xu, Zhiqiang & Wang, Qun & Wang, Zhe, 2023. "Slurry-ability mathematical modeling of microwave-modified lignite: A comparative analysis of multivariate non-linear regression model and XGBoost algorithm model," Energy, Elsevier, vol. 281(C).
    11. Strizhak, Pavel A. & Vershinina, Ksenia Yu., 2017. "Maximum combustion temperature for coal-water slurry containing petrochemicals," Energy, Elsevier, vol. 120(C), pages 34-46.
    12. Maxim Belonogov & Vadim Dorokhov & Dmitrii Glushkov & Daria Kuznechenkova & Daniil Romanov, 2023. "Combustion Characteristics of Coal-Water Slurry Droplets in High-Temperature Air with the Addition of Syngas," Energies, MDPI, vol. 16(8), pages 1-17, April.
    13. Geniy Kuznetsov & Dmitrii Antonov & Maxim Piskunov & Leonid Yanovskyi & Olga Vysokomornaya, 2022. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    14. Kuznetsov, G.V. & Malyshev, D. Yu & Kostoreva, Zh.A. & Syrodoy, S.V. & Gutareva, N. Yu., 2020. "The ignition of the bio water-coal fuel particles based on coals of different degree metamorphism," Energy, Elsevier, vol. 201(C).
    15. Zhang, Yueling & Li, Junjie & Yang, Xiaoxiao, 2021. "Comprehensive competitiveness assessment of four coal-to-liquid routes and conventional oil refining route in China," Energy, Elsevier, vol. 235(C).
    16. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    17. Muñoz, Emilio & Marín, Pablo & Díez, Fernando V. & Ordóñez, Salvador, 2015. "Selective catalytic reduction of NO in a reverse-flow reactor: Modelling and experimental validation," Applied Energy, Elsevier, vol. 138(C), pages 183-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3915-:d:949699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.