IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p2131-d842475.html
   My bibliography  Save this article

Regional Location Routing Problem for Waste Collection Using Hybrid Genetic Algorithm-Simulated Annealing

Author

Listed:
  • Vincent F. Yu

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
    Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

  • Grace Aloina

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

  • Hadi Susanto

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan)

  • Mohammad Khoirul Effendi

    (Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

  • Shih-Wei Lin

    (Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan
    Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei 243303, Taiwan
    Department of Emergency Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan)

Abstract

Municipal waste management has become a challenging issue with the rise in urban populations and changes in people’s habits, particularly in developing countries. Moreover, government policy plays an important role associated with municipal waste management. Thus, this research proposes the regional location routing problem (RLRP) model and multi-depot regional location routing problem (MRLRP) model, which are extensions of the location routing problem (LRP), to provide a better municipal waste collection process. The model is constructed to cover the minimum number of depot facilities’ policy requirements for each region due to government policy, i.e., the large-scale social restrictions in each region. The goal is to determine the depot locations in each region and the vehicles’ routes for collecting waste to fulfill inter-regional independent needs at a minimum total cost. This research conducts numerical examples with actual data to illustrate the model and implements a hybrid genetic algorithm and simulated annealing optimization to solve the problem. The results show that the proposed method efficiently solves the RLRP and MRLRP.

Suggested Citation

  • Vincent F. Yu & Grace Aloina & Hadi Susanto & Mohammad Khoirul Effendi & Shih-Wei Lin, 2022. "Regional Location Routing Problem for Waste Collection Using Hybrid Genetic Algorithm-Simulated Annealing," Mathematics, MDPI, vol. 10(12), pages 1-23, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2131-:d:842475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/2131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/2131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pawel Sitek & Jarosław Wikarek, 2019. "Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using hybrid approach," Annals of Operations Research, Springer, vol. 273(1), pages 257-277, February.
    2. Hanan Ouhader & Malika El Kyal, 2017. "Combining Facility Location and Routing Decisions in Sustainable Urban Freight Distribution under Horizontal Collaboration: How Can Shippers Be Benefited?," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-18, July.
    3. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    4. Nadizadeh, Ali & Hosseini Nasab, Hasan, 2014. "Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 458-470.
    5. Christian Prins & Caroline Prodhon & Angel Ruiz & Patrick Soriano & Roberto Wolfler Calvo, 2007. "Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic," Transportation Science, INFORMS, vol. 41(4), pages 470-483, November.
    6. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    7. Haugland, Dag & Ho, Sin C. & Laporte, Gilbert, 2007. "Designing delivery districts for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 180(3), pages 997-1010, August.
    8. Jacobsen, S. K. & Madsen, O. B. G., 1980. "A comparative study of heuristics for a two-level routing-location problem," European Journal of Operational Research, Elsevier, vol. 5(6), pages 378-387, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kangye Tan & Yihui Tian & Fang Xu & Chunsheng Li, 2023. "Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    2. Ao Lv & Baofeng Sun, 2022. "Multi-Objective Robust Optimization for the Sustainable Location-Inventory-Routing Problem of Auto Parts Supply Logistics," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    3. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    4. Yuxin Liu & Zihang Qin & Jin Liu, 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    5. Cristina Lopes & Ana Maria Rodrigues & Valeria Romanciuc & José Soeiro Ferreira & Elif Göksu Öztürk & Cristina Oliveira, 2023. "Divide and Conquer: A Location-Allocation Approach to Sectorization," Mathematics, MDPI, vol. 11(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    2. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    4. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    5. Jaller, Miguel & Pahwa, Anmol, 2023. "Coping with the Rise of E-commerce Generated Home Deliveries through Innovative Last-mile Technologies and Strategies," Institute of Transportation Studies, Working Paper Series qt5t76x0kh, Institute of Transportation Studies, UC Davis.
    6. Andrés Martínez-Reyes & Carlos L. Quintero-Araújo & Elyn L. Solano-Charris, 2021. "Supplying Personal Protective Equipment to Intensive Care Units during the COVID-19 Outbreak in Colombia. A Simheuristic Approach Based on the Location-Routing Problem," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    7. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    8. Moshref-Javadi, Mohammad & Lee, Seokcheon, 2016. "The Latency Location-Routing Problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 604-619.
    9. M. Tadaros & A. Migdalas, 2022. "Bi- and multi-objective location routing problems: classification and literature review," Operational Research, Springer, vol. 22(5), pages 4641-4683, November.
    10. Lihua Liu & Lai Soon Lee & Hsin-Vonn Seow & Chuei Yee Chen, 2022. "Logistics Center Location-Inventory-Routing Problem Optimization: A Systematic Review Using PRISMA Method," Sustainability, MDPI, vol. 14(23), pages 1-39, November.
    11. Mahdi Bashiri & Zeinab Rasoulinejad & Ehsan Fallahzade, 2016. "A new approach on auxiliary vehicle assignment in capacitated location routing problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 886-902, March.
    12. Rieck, Julia & Ehrenberg, Carsten & Zimmermann, Jürgen, 2014. "Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery," European Journal of Operational Research, Elsevier, vol. 236(3), pages 863-878.
    13. Stenger, Andreas & Schneider, Michael & Schwind, Michael & Vigo, Daniele, 2012. "Location routing for small package shippers with subcontracting options," International Journal of Production Economics, Elsevier, vol. 140(2), pages 702-712.
    14. Jenn-Rong Lin & Hsien-Chung Lei, 2009. "Distribution systems design with two-level routing considerations," Annals of Operations Research, Springer, vol. 172(1), pages 329-347, November.
    15. Guido Perboli & Roberto Tadei & Daniele Vigo, 2011. "The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics," Transportation Science, INFORMS, vol. 45(3), pages 364-380, August.
    16. Yanwei Zhao & Longlong Leng & Chunmiao Zhang, 2021. "A novel framework of hyper-heuristic approach and its application in location-routing problem with simultaneous pickup and delivery," Operational Research, Springer, vol. 21(2), pages 1299-1332, June.
    17. Nguyen, Viet-Phuong & Prins, Christian & Prodhon, Caroline, 2012. "Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking," European Journal of Operational Research, Elsevier, vol. 216(1), pages 113-126.
    18. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    19. Guerrero, W.J. & Prodhon, C. & Velasco, N. & Amaya, C.A., 2013. "Hybrid heuristic for the inventory location-routing problem with deterministic demand," International Journal of Production Economics, Elsevier, vol. 146(1), pages 359-370.
    20. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2131-:d:842475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.