IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i2p43-d317613.html
   My bibliography  Save this article

How Effective Is Spatial Planning for Cropland Protection? An Assessment Based on Land-Use Scenarios

Author

Listed:
  • Silvia Tobias

    (Land-Use Systems Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland)

  • Bronwyn Price

    (Remote Sensing Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland)

Abstract

Spatial planning plays an important role in cropland protection, but its effectiveness is often questioned in the face of ongoing urban and infrastructure growth. Moreover, methods to assess the effectiveness of spatial planning are lacking. In Switzerland, the revision of the national spatial planning act in 2014 was a new starting point for stricter prescriptions on urban development. We assessed whether the new regulations would better protect dedicated prime cropland from conversion to urban areas using land-use suitability models and land-use scenarios. The findings show that with the planning according to the revised planning act, the potential consumption of prime cropland for new urban areas is six times smaller than that occurring through extrapolation of the observed trend in urban development over the past 25 years. However, scenario modeling suggests that, still, more prime cropland will be converted into urban areas than necessary, and that it may be difficult to protect prime cropland to the extent mandated by the Swiss prime cropland protection policy. We have developed an approach to a priori evaluate spatial planning measures. However, the strict implementation of these planning measures will be needed in order to maintain prime cropland to a level required for agricultural self-sufficiency and food security.

Suggested Citation

  • Silvia Tobias & Bronwyn Price, 2020. "How Effective Is Spatial Planning for Cropland Protection? An Assessment Based on Land-Use Scenarios," Land, MDPI, vol. 9(2), pages 1-20, February.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:43-:d:317613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/2/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/2/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliveira, Eduardo & Leuthard, Jasmin & Tobias, Silvia, 2019. "Spatial planning instruments for cropland protection in Western European countries," Land Use Policy, Elsevier, vol. 87(C).
    2. Huiran Han & Chengfeng Yang & Jinping Song, 2015. "Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    3. Eduardo Oliveira & Anna M. Hersperger, 2019. "Disentangling the Governance Configurations of Strategic Spatial Plan-Making in European Urban Regions," Planning Practice & Research, Taylor & Francis Journals, vol. 34(1), pages 47-61, January.
    4. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    5. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    6. Eric Koomen & Piet Rietveld & Ton Nijs, 2008. "Modelling land-use change for spatial planning support," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 1-10, March.
    7. Harutyun Shahumyan & Brendan Williams & Laura Petrov & Walter Foley, 2014. "Regional Development Scenario Evaluation through Land Use Modelling and Opportunity Mapping," Land, MDPI, vol. 3(3), pages 1-34, September.
    8. Hee-Sun Choi & Gil-Sang Lee, 2016. "Planning Support Systems (PSS)-Based Spatial Plan Alternatives and Environmental Assessment," Sustainability, MDPI, vol. 8(3), pages 1-19, March.
    9. Li Fang & Marie Howland & Jinyhup Kim & Qiong Peng & Jiemin Wu, 2019. "Can transfer of development rights programs save farmland in metropolitan counties?," Growth and Change, Wiley Blackwell, vol. 50(3), pages 926-946, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangyuan Cui & Donglin Dong & Qiang Gao, 2023. "A Study on the Spatial Change of Production–Living–Ecology in China in the Past Two Decades Based on Intensity Analysis in the Context of Arable Land Protection and Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    2. Le Yin & Erfu Dai & Guopan Xie & Baolei Zhang, 2021. "Effects of Land-Use Intensity and Land Management Policies on Evolution of Regional Land System: A Case Study in the Hengduan Mountain Region," Land, MDPI, vol. 10(5), pages 1-13, May.
    3. Schulz, Tobias & Eggenberger, Tanja & Olschewski, Roland & Lieberherr, Eva, 2023. "Allowing for compensating lost habitats in the forest: Comparing institutional change in Germany and Switzerland," Forest Policy and Economics, Elsevier, vol. 150(C).
    4. Bieda, Agnieszka & Dybał, Łukasz, 2021. "Assessing correctness of local spatial policy using information on commencement of construction investment process," Land Use Policy, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    3. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    4. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.
    5. Yishao Shi & Jie Wu & Shouzheng Shi, 2017. "Study of the Simulated Expansion Boundary of Construction Land in Shanghai Based on a SLEUTH Model," Sustainability, MDPI, vol. 9(6), pages 1-15, May.
    6. Ivan Marić & Lovre Panđa & Josip Faričić & Ante Šiljeg & Fran Domazetović & Tome Marelić, 2022. "Long-Term Assessment of Spatio-Temporal Landuse/Landcover Changes (LUCCs) of Ošljak Island (Croatia) Using Multi-Temporal Data—Invasion of Aleppo Pine," Land, MDPI, vol. 11(5), pages 1-38, April.
    7. Juan Wang & Jiaqi Lv & Wenping Zhang & Tianqian Chen & Yang Yang & Jinjin Wu, 2022. "Land-Use Pattern Evaluation Using GeoSOS-FLUS in National Territory Spatial Planning: A Case Study of Changzhi City, Shanxi Province," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    9. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    10. Rommel, Jens & Anggraini, Eva, 2018. "Spatially explicit framed field experiments on ecosystem services governance," Ecosystem Services, Elsevier, vol. 34(PB), pages 201-205.
    11. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    12. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    13. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    14. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    15. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    16. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    17. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    18. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    19. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    20. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:43-:d:317613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.