IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i2p239-d742679.html
   My bibliography  Save this article

A New Approach to Investigate the Spatially Heterogeneous in the Cooling Effects of Landscape Pattern

Author

Listed:
  • Shuang Liu

    (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Xuefei Li

    (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Long Chen

    (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Qing Zhao

    (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Chaohui Zhao

    (Fuzhou Highway Development Center, Fuzhou 350002, China)

  • Xisheng Hu

    (College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Jian Li

    (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

Although many prior studies have found that landscape pattern significantly affects urban heat environment globally, the spatially heterogeneous in the cooling effects of landscape pattern remains poorly understood. In addition, most previous studies have only employed a single landscape metric separately, without holistic consideration of the composition and configuration of different landscapes. Taking one of the new “stove” cities in China-Fuzhou City, Fujian Province, as an example, we employed the principal component analysis (PCA) to synthesize a landscape pattern comprehensive index (LPCI) composed of the four common landscape metrics (i.e., aggregation index, AI; mean patch area, Area mn; largest patch index, LPI; and percentage of landscape, PLAND) of the three major land surfaces (i.e., water, vegetation, and impervious surface). Then, the local model (geographically weighted regression, GWR) was proposed to explore the spatially heterogeneous in the cooling effects of urban landscape. The results revealed that: (1) from 2000 to 2016, the land surface temperature (LST) increased by 4.262 °C, and the proportion of the urban heat island region showed an upward trend, while the urban-heat-island ratio index (URI) increased from 0.328 to 0.457; (2) the cooling effect of different land surfaces ranked from high to low was: water (29.69 °C), vegetation (38.56 °C), and impervious surface (41.82 °C); (3) compared with vegetation patches, water patches had a more obvious cooling effect on the surrounding environment, with the cooling distance within 60–90 m for the vegetation, while reaching 120–150 m for water body; (4) the proposed LPCI could explain more than 80% of the information for all of the landscape metrics for all of the landscape types, and presented a patchy distribution in the study area; (5) the GWR results revealed that the cooling effect of the landscape pattern varied spatially across the study area, indicating that the configuration of landscapes is more important in an urban center in alleviating urban heat environment than in an urban fringe area. The proposed approach provides a new understanding of the interaction between the landscape patterns and urban heat environments, providing a strong basis for landscape planning strategies for specific local sites.

Suggested Citation

  • Shuang Liu & Xuefei Li & Long Chen & Qing Zhao & Chaohui Zhao & Xisheng Hu & Jian Li, 2022. "A New Approach to Investigate the Spatially Heterogeneous in the Cooling Effects of Landscape Pattern," Land, MDPI, vol. 11(2), pages 1-21, February.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:239-:d:742679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/2/239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/2/239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:asg:wpaper:1039 is not listed on IDEAS
    2. Hongyan Cai & Xinliang Xu, 2017. "Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    3. Alistair W. R. Seddon & Marc Macias-Fauria & Peter R. Long & David Benz & Kathy J. Willis, 2016. "Sensitivity of global terrestrial ecosystems to climate variability," Nature, Nature, vol. 531(7593), pages 229-232, March.
    4. Klok, Lisette & Zwart, Sander & Verhagen, Henk & Mauri, Elena, 2012. "The surface heat island of Rotterdam and its relationship with urban surface characteristics," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 23-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heni Masruroh & Soemarno Soemarno & Syahrul Kurniawan & Amin Setyo Leksono, 2023. "A Spatial Model of Landslides with A Micro-Topography and Vegetation Approach for Sustainable Land Management in the Volcanic Area," Sustainability, MDPI, vol. 15(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    2. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    3. Sharaniya Vijitharan & Nophea Sasaki & Manjunatha Venkatappa & Nitin Kumar Tripathi & Issei Abe & Takuji W. Tsusaka, 2022. "Assessment of Forest Cover Changes in Vavuniya District, Sri Lanka: Implications for the Establishment of Subnational Forest Reference Emission Level," Land, MDPI, vol. 11(7), pages 1-25, July.
    4. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Huang, Ze & Liu, Yu & Qiu, Kaiyang & López-Vicente, Manuel & Shen, Weibo & Wu, Gao-Lin, 2021. "Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: Implications for sustainable agroforestry water management," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    7. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    8. Henry R. Scharf & Ann M. Raiho & Sierra Pugh & Carl A. Roland & David K. Swanson & Sarah E. Stehn & Mevin B. Hooten, 2022. "Multivariate Bayesian clustering using covariate‐informed components with application to boreal vegetation sensitivity," Biometrics, The International Biometric Society, vol. 78(4), pages 1427-1440, December.
    9. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    10. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    11. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    12. Thaís Pacheco Kasecker & Mario Barroso Ramos-Neto & Jose Maria Cardoso Silva & Fabio Rubio Scarano, 2018. "Ecosystem-based adaptation to climate change: defining hotspot municipalities for policy design and implementation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 981-993, August.
    13. Yu-Pin Lin & Chi-Ju Chen & Wan-Yu Lien & Wen-Hao Chang & Joy R. Petway & Li-Chi Chiang, 2019. "Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    14. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    15. Luyun Chen & Yongheng Gao, 2022. "Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems," Land, MDPI, vol. 11(10), pages 1-16, September.
    16. Wenbo Chen & Fuqing Zhang & Saiwei Luo & Taojie Lu & Jiao Zheng & Lei He, 2022. "Three-Dimensional Landscape Pattern Characteristics of Land Function Zones and Their Influence on PM 2.5 Based on LUR Model in the Central Urban Area of Nanchang City, China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    17. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    18. Kexin Zhang & Jiajia Luo & Jiaoting Peng & Hongchang Zhang & Yan Ji & Hong Wang, 2022. "Analysis of Extreme Temperature Variations on the Yunnan-Guizhou Plateau in Southwestern China over the Past 60 Years," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    19. Qin Wang & Qin Ju & Yueyang Wang & Quanxi Shao & Rongrong Zhang & Yanli Liu & Zhenchun Hao, 2022. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    20. Yue Pan & Jian Gong & Jingye Li, 2022. "Assessment of Remote Sensing Ecological Quality by Introducing Water and Air Quality Indicators: A Case Study of Wuhan, China," Land, MDPI, vol. 11(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:239-:d:742679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.