IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2302-d1004331.html
   My bibliography  Save this article

Soil Erosion across Scales: Assessing Its Sources of Variation in Sahelian Landscapes under Semi-Arid Climate

Author

Listed:
  • Lawani Adjadi Mounirou

    (Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso)

  • Roland Yonaba

    (Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso)

  • Fowé Tazen

    (Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso)

  • Gebiaw T. Ayele

    (Australian River Institute and School of Engineering, Griffith University, Nathan, QLD 4111, Australia)

  • Zaher Mundher Yaseen

    (Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Harouna Karambiri

    (Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso)

  • Hamma Yacouba

    (Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou 01, Burkina Faso)

Abstract

Soil erosion varies in space and time. As the contributing surface area increases, heterogeneity effects are amplified, inducing scale effects. In the present study, soil erosion processes as affected by the observation scale and the soil surface conditions are assessed. An experimental field scale setup of 18 plots (1–150 m 2 ) with different soil surface conditions (bare and degraded, cultivated) and slopes (0.75–4.2%) are used to monitor soil losses between 2010 to 2018 under natural rainfall. The results showed that soil loss rates range between 2.5 and 19.5 t.ha −1 under cultivated plots and increase to 12–45 t.ha −1 on bare and degraded soils, which outlines the control of soil surface conditions on soil erosion. At a larger scale (38 km 2 ), soil losses are estimated at 2.2–4.5 t.ha −1 , highlighting the major contribution of scale. The scale effect is likely caused by the redistribution of sediments in the drainage network. These findings outline the nature and contribution of the emerging and dominant soil erosion processes at larger scales. At the plot scale, however, diffuse erosion remains dominant, since surface runoff is laminar and sediment transport capacity is limited, resulting in lower soil erosion rates.

Suggested Citation

  • Lawani Adjadi Mounirou & Roland Yonaba & Fowé Tazen & Gebiaw T. Ayele & Zaher Mundher Yaseen & Harouna Karambiri & Hamma Yacouba, 2022. "Soil Erosion across Scales: Assessing Its Sources of Variation in Sahelian Landscapes under Semi-Arid Climate," Land, MDPI, vol. 11(12), pages 1-19, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2302-:d:1004331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moussa Bruno Kafando & Mahamadou Koïta & Cheick Oumar Zouré & Roland Yonaba & Dial Niang, 2022. "Quantification of Soil Deep Drainage and Aquifer Recharge Dynamics according to Land Use and Land Cover in the Basement Zone of Burkina Faso in West Africa," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    2. Clement Nyamekye & Michael Thiel & Sarah Schönbrodt-Stitt & Benewinde J.-B. Zoungrana & Leonard K. Amekudzi, 2018. "Soil and Water Conservation in Burkina Faso, West Africa," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
    3. Yonaba, R. & Koïta, M. & Mounirou, L.A. & Tazen, F. & Queloz, P. & Biaou, A.C. & Niang, D. & Zouré, C. & Karambiri, H. & Yacouba, H., 2021. "Spatial and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern Burkina Faso," Land Use Policy, Elsevier, vol. 103(C).
    4. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaokai Wan & Qingchen Song & Jilin Wang & Mingming Guo & Xin Liu & Zhuoxin Chen & Pengchong Zhou & Puqiang Wan, 2023. "Geometry Morphology and Distribution Characteristics of Permanent Gullies in the Greater and Lesser Khingan Mountains Forest Region of China," Sustainability, MDPI, vol. 15(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    2. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    3. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    4. Queiroz, Julia & Gasparinetti, Pedro & Bakker, Leonardo B. & Lobo, Felipe & Nagel, Gustavo, 2022. "Socioeconomic cost of dredge boat gold mining in the Tapajós basin, eastern Amazon," Resources Policy, Elsevier, vol. 79(C).
    5. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    7. Ramos Scharrón, Carlos E., 2023. "On the hydro-geomorphology of steepland coffee farming: Runoff and surface erosion," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Qing Li & Yong Zhou & Li Wang & Qian Zuo & Siqi Yi & Jingyi Liu & Xueping Su & Tao Xu & Yan Jiang, 2021. "The Link between Landscape Characteristics and Soil Losses Rates over a Range of Spatiotemporal Scales: Hubei Province, China," IJERPH, MDPI, vol. 18(21), pages 1-16, October.
    9. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    10. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    11. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    12. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    13. McCartney, Matthew & Rex, William & Yu, Winston & Uhlenbrook, Stefan & von Gnechten, Rachel, 2022. "Change in global freshwater storage," IWMI Reports 329159, International Water Management Institute.
    14. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic,, 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    15. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    16. Matthew D. Turner & Molly Teague & Augustine Ayantunde, 2021. "Livelihood, culture and patterns of food consumption in rural Burkina Faso," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1193-1213, October.
    17. Yonaba, R. & Koïta, M. & Mounirou, L.A. & Tazen, F. & Queloz, P. & Biaou, A.C. & Niang, D. & Zouré, C. & Karambiri, H. & Yacouba, H., 2021. "Spatial and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern Burkina Faso," Land Use Policy, Elsevier, vol. 103(C).
    18. Turner, Matthew D. & Eggen, Michael & Teague, Molly S. & Ayantunde, Augustine A., 2021. "Variation in land endowments among villages in West Africa: Implications for land management," Land Use Policy, Elsevier, vol. 111(C).
    19. Bunga Ludmila Rendrarpoetri & Ernan Rustiadi & Akhmad Fauzi & Andrea Emma Pravitasari, 2024. "Sustainability Assessment of the Upstream Bengawan Solo Watershed in Wonogiri Regency, Central Java Province, Indonesia," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    20. Sartori, Martina & Ferrari, Emanuele & Simola, Antti, 2022. "The economic effects of soil erosion in Africa: a 2050 analysis," Conference papers 333487, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2302-:d:1004331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.