IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v10y2017i3p16-d107638.html
   My bibliography  Save this article

Global Hedging through Post-Decision State Variables

Author

Listed:
  • Michèle Breton

    (Department of Decision Sciences, HEC Montréal, 3000 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Canada)

  • Frédéric Godin

    (Department of Mathematics and Statistics, Concordia University, 1455 Boulevard de Maisonneuve O, QC H3G 1M8, Canada)

Abstract

Unlike delta-hedging or similar methods based on Greeks, global hedging is an approach that optimizes some terminal criterion that depends on the difference between the value of a derivative security and that of its hedging portfolio at maturity or exercise. Global hedging methods in discrete time can be implemented using dynamic programming. They provide optimal strategies at all rebalancing dates for all possible states of the world, and can easily accommodate transaction fees and other frictions. However, considering transaction fees in the dynamic programming model requires the inclusion of an additional state variable, which translates into a significant increase of the computational burden. In this short note, we show how a decomposition technique based on the concept of post-decision state variables can be used to reduce the complexity of the computations to the level of a problem without transaction fees. The latter complexity reduction allows for substantial gains in terms of computing time and should therefore contribute to increasing the applicability of global hedging schemes in practice where the timely execution of portfolio rebalancing trades is crucial.

Suggested Citation

  • Michèle Breton & Frédéric Godin, 2017. "Global Hedging through Post-Decision State Variables," JRFM, MDPI, vol. 10(3), pages 1-6, August.
  • Handle: RePEc:gam:jjrfmx:v:10:y:2017:i:3:p:16-:d:107638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/10/3/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/10/3/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    2. E. R. Grannan & G. H. Swindle, 1996. "Minimizing Transaction Costs Of Option Hedging Strategies," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 341-364, October.
    3. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    4. Valeri zakamouline, 2006. "Efficient analytic approximation of the optimal hedging strategy for a European call option with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 435-445.
    5. François, Pascal & Gauthier, Geneviève & Godin, Frédéric, 2014. "Optimal hedging when the underlying asset follows a regime-switching Markov process," European Journal of Operational Research, Elsevier, vol. 237(1), pages 312-322.
    6. Zhao, Yonggan & Ziemba, William T., 2007. "Hedging errors with Leland's option model in the presence of transaction costs," Finance Research Letters, Elsevier, vol. 4(1), pages 49-58, March.
    7. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    8. F. Godin, 2016. "Minimizing CVaR in global dynamic hedging with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 461-475, March.
    9. Toft, Klaus Bjerre, 1996. "On the Mean-Variance Tradeoff in Option Replication with Transactions Costs," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(2), pages 233-263, June.
    10. Ni, Jian & Chu, Lap Keung & Wu, Feng & Sculli, Domenic & Shi, Yuan, 2012. "A multi-stage financial hedging approach for the procurement of manufacturing materials," European Journal of Operational Research, Elsevier, vol. 221(2), pages 424-431.
    11. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Carbonneau & Frédéric Godin, 2023. "Deep Equal Risk Pricing of Financial Derivatives with Non-Translation Invariant Risk Measures," Risks, MDPI, vol. 11(8), pages 1-27, August.
    2. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    2. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    3. Debbie Dupuis, Geneviève Gauthier, and Fréderic Godin, 2016. "Short-term Hedging for an Electricity Retailer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. F. Godin, 2016. "Minimizing CVaR in global dynamic hedging with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 461-475, March.
    5. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    6. Antje Mahayni, 2003. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 521-552.
    7. Alexandre Carbonneau, 2020. "Deep Hedging of Long-Term Financial Derivatives," Papers 2007.15128, arXiv.org.
    8. Alexandre Carbonneau & Fr'ed'eric Godin, 2020. "Equal Risk Pricing of Derivatives with Deep Hedging," Papers 2002.08492, arXiv.org, revised Jun 2020.
    9. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    10. Constantinides, George M. & Perrakis, Stylianos, 2002. "Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1323-1352, July.
    11. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    12. Melnikov, Alexander & Tong, Shuo, 2014. "Quantile hedging on equity-linked life insurance contracts with transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 77-88.
    13. Jacques, Sébastien & Lai, Van Son & Soumaré, Issouf, 2011. "Synthetizing a debt guarantee: Super-replication versus utility approach," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 27-40, January.
    14. Branger, Nicole & Mahayni, Antje, 2006. "Tractable hedging: An implementation of robust hedging strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 1937-1962, November.
    15. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.
    16. Nicole Branger & Antje Mahayni, 2011. "Tractable hedging with additional hedge instruments," Review of Derivatives Research, Springer, vol. 14(1), pages 85-114, April.
    17. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "Risk preference, option pricing and portfolio hedging with proportional transaction costs," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 111-130.
    18. Albanese, Claudio & Tompaidis, Stathis, 2008. "Small transaction cost asymptotics and dynamic hedging," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1404-1414, March.
    19. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.
    20. Emmanuel Denis & Yuri Kabanov, 2010. "Mean square error for the Leland–Lott hedging strategy: convex pay-offs," Finance and Stochastics, Springer, vol. 14(4), pages 625-667, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:10:y:2017:i:3:p:16-:d:107638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.