IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v9y2012i8p2827-2838d19318.html
   My bibliography  Save this article

Oxidative Response and Antioxidative Mechanism in Germinating Soybean Seeds Exposed to Cadmium

Author

Listed:
  • Shiyong Yang

    (Section of Ecology, School of Life Sciences, Anhui Normal University, Wuhu 241000, China)

  • Jianchun Xie

    (School of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China)

  • Quanfa Li

    (Section of Ecology, School of Life Sciences, Anhui Normal University, Wuhu 241000, China)

Abstract

Seeds of soybean ( Glycine max L.) exposed to 50 mg/L (Cd50), 100 mg/L (Cd100) and 200 mg/L (Cd200) cadmium solution for 24, 48, 72 and 96 h were examined with reference to Cd accumulation, oxidative stress and antioxidative responses. Soybean seeds accumulated Cd in an exposure time-and dosage-dependent manner. FRAP (ferric reducing ability of plasma) concentration, GSH/hGSH content, and GST activity showed a pronounced exposure time-dependent response. Cd100 enhanced FRAP concentration in germinating soybean seeds as compared to Cd50 treatment after 24 h exposure. Cd200 however increased statistically GST activities after 72 and 96 h exposure. Under all Cd dosages, GSH/hGSH concentrations were depressed with increasing exposure time. Reduction of GSH/hGSH content and concomitant increase of GST activity suggested a possible participation of GSH into GSH-Cd conjugates synthesis. MDA content is a potential biomarker for monitoring Cd phytotoxicity because it responds significantly to treatment dosage, exposure time and dosage ´ exposure time interaction. Increase of proline content may be a response to acute heavy metal toxicity in soybean seeds.

Suggested Citation

  • Shiyong Yang & Jianchun Xie & Quanfa Li, 2012. "Oxidative Response and Antioxidative Mechanism in Germinating Soybean Seeds Exposed to Cadmium," IJERPH, MDPI, vol. 9(8), pages 1-12, August.
  • Handle: RePEc:gam:jijerp:v:9:y:2012:i:8:p:2827-2838:d:19318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/9/8/2827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/9/8/2827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Qadir & A. Ghafoor & G. Murtaza & G. MURTAZA, 2000. "Cadmium Concentration in Vegetables Grown on Urban Soils Irrigated with Untreated Municipal Sewage," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 2(1), pages 13-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sacchidananda Mukherjee & Prakash Nelliyat, 2006. "Ground Water Pollution and Emerging Environmental Challenges of Industrial Effluent Irrigation: A Case Study of Mettupalayam Taluk, Tamilnadu," Working Papers 2006-07, Madras School of Economics,Chennai,India.
    2. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    3. Niaz Ahmed & Ali Raza Shah & Subhan Danish & Khadiga Alharbi & Rahul Datta, 2022. "Acidified Carbon with Variable Irrigation Sources Impact on Rice Growth and Yield under Cd Toxic Alkaline Soil Conditions," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    4. Seidu, Razak & Drechsel, Pay, 2011. "Analyse cout-efficacite des interventions pour reduire les maladies diarrheiques chez les consommateurs de laitues irriguees avec des eaux usees au Ghana. In French," Book Chapters,, International Water Management Institute.
    5. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:9:y:2012:i:8:p:2827-2838:d:19318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.