IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i14p6401-d1197546.html
   My bibliography  Save this article

Tortoise or Hare? The Associations between Physical Activity Volume and Intensity Distribution and the Risk of All-Cause Mortality: A Large Prospective Analysis of the UK Biobank

Author

Listed:
  • Ruth Salway

    (Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol BS8 1TZ, UK)

  • Nicole Helene Augustin

    (School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK)

  • Miranda Elaine Glynis Armstrong

    (Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol BS8 1TZ, UK)

Abstract

Analysis methods to determine the optimal combination of volume and intensity of objectively measured physical activity (PA) with prospective outcomes are limited. Participants in UK Biobank were recruited in the UK between 2006 and 2010. We linked the questionnaire and accelerometer with all-cause mortality data from the NHS Information Centre and NHS Central Register up to April 2021. We developed a novel method, extending the penalized spline model of Augustin et al. to a smooth additive Cox model for survival data, and estimated the prospective relationship between intensity distribution and all-cause mortality, adjusting for the overall volume of PA. We followed 84,166 men and women (aged 40–69) for an average of 6.4 years (range 5.3–7.9), with an observed mortality rate of 22.2 deaths per 1000. Survival rates differed by PA volume quartile, with poorer outcomes for the lowest PA volumes. Participants with more sedentary to light intensity PA (<100 milligravities (mg)) and/or less vigorous intensity PA (>250 mg) than average for a given volume of PA, had higher mortality rates than vice versa. Approximate hazard ratios were 0.83 (95% credible interval [CI]: 0.79, 0.88) for an average-risk profile compared to a high-risk profile and 0.80 (95% CI: 0.74, 0.87) for a low-risk profile compared to an average-risk profile. A high- versus low-risk profile has the equivalent of 15 min more slow walking, but 10 min less moderate walking. At low PA volumes, increasing overall volume suggests the most benefit in reducing all-cause mortality risk. However, at higher overall volumes, substituting lighter with more vigorous intensity activity suggests greater benefit.

Suggested Citation

  • Ruth Salway & Nicole Helene Augustin & Miranda Elaine Glynis Armstrong, 2023. "Tortoise or Hare? The Associations between Physical Activity Volume and Intensity Distribution and the Risk of All-Cause Mortality: A Large Prospective Analysis of the UK Biobank," IJERPH, MDPI, vol. 20(14), pages 1-13, July.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:14:p:6401-:d:1197546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/14/6401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/14/6401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    2. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    3. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    4. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    5. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    6. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    7. Paolo Veneri, 2018. "Urban spatial structure in OECD cities: Is urban population decentralising or clustering?," Papers in Regional Science, Wiley Blackwell, vol. 97(4), pages 1355-1374, November.
    8. Schwemmer, Philipp & Güpner, Franziska & Adler, Sven & Klingbeil, Knut & Garthe, Stefan, 2016. "Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors," Ecological Modelling, Elsevier, vol. 320(C), pages 322-333.
    9. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    10. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    11. Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.
    12. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    14. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    15. ferrara, giancarlo & campagna, arianna & bucci, valeria & atella, vincenzo, 2021. "Presumptive taxation and firms’ efficiency: an integrated approach for tax compliance analysis," MPRA Paper 111516, University Library of Munich, Germany.
    16. Ronald E. Gangnon & Natasha K. Stout & Oguzhan Alagoz & John M. Hampton & Brian L. Sprague & Amy Trentham-Dietz, 2018. "Contribution of Breast Cancer to Overall Mortality for US Women," Medical Decision Making, , vol. 38(1_suppl), pages 24-31, April.
    17. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    18. Yuting Xue & Ji Cong & Yi Bai & Pai Zheng & Guiping Hu & Yulin Kang & Yonghua Wu & Liyan Cui & Guang Jia & Tiancheng Wang, 2023. "Associations between Short-Term Air Pollution Exposure and the Peripheral Leukocyte Distribution in the Adult Male Population in Beijing, China," IJERPH, MDPI, vol. 20(6), pages 1-14, March.
    19. Florackis, Chrisostomos & Kostakis, Alexandros & Ozkan, Aydin, 2009. "Managerial ownership and performance," Journal of Business Research, Elsevier, vol. 62(12), pages 1350-1357, December.
    20. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:14:p:6401-:d:1197546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.