IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5625-d808956.html
   My bibliography  Save this article

Scientometric Analysis of The Relationship between a Built Environment and Cardiovascular Disease

Author

Listed:
  • Zhonghui Zheng

    (School of Architecture & Art Design, Hebei University of Technology, Tianjin 300132, China)

  • Ping Zhang

    (School of Architecture & Art Design, Hebei University of Technology, Tianjin 300132, China)

  • Fangzheng Yuan

    (School of Architecture & Art Design, Hebei University of Technology, Tianjin 300132, China)

  • Yunque Bo

    (Policy Research Department, Tianjin Medical Information Center, Tianjin 300041, China)

Abstract

The prevention and treatment of cardiovascular disease (CVD) are necessary to improve patient quality of life and to reduce the burden of medical and other social problems. Reducing the impact of CVD through environmental intervention was hailed as the most economical approach and research into such interventions is becoming key. The purpose of this article is to summarize the research topics and developments in the field of the built environment and CVD between 2000 and 2021 using scientometric analysis. In total, 1304 records retrieved from the Web of Science core database were analyzed using CiteSpace software, and the results were displayed using knowledge mapping. The number of publications and conferences relating to the built environment and CVD showed an upward trend over the study period, with the United States taking the lead. Physical activity and the food environment were used as mediators and entry points to map the relationship between the built environment and CVD. Walkability, residence characteristics, the food environment, and greenness were key research topics. Research shifted over the period to incorporate quantitative analyses of subjective feelings while focusing on decreasing sedentary behavior. Understanding the variability in the built environment is critical to improving the generalizability of the findings presented in the individual studies. Inter-disciplinary and multi-disciplinary research is conducive to innovation and ensuring the integration of real environmental elements. This study provides an overview and valuable guidance for researchers relating to how the built environment impacts CVD.

Suggested Citation

  • Zhonghui Zheng & Ping Zhang & Fangzheng Yuan & Yunque Bo, 2022. "Scientometric Analysis of The Relationship between a Built Environment and Cardiovascular Disease," IJERPH, MDPI, vol. 19(9), pages 1-18, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5625-:d:808956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Cristina Vert & Mark Nieuwenhuijsen & Mireia Gascon & James Grellier & Lora E. Fleming & Mathew P. White & David Rojas-Rueda, 2019. "Health Benefits of Physical Activity Related to an Urban Riverside Regeneration," IJERPH, MDPI, vol. 16(3), pages 1-18, February.
    3. Crane, Randall, 1998. "Travel By Design?," University of California Transportation Center, Working Papers qt3pc4v6jj, University of California Transportation Center.
    4. Michael Eichinger & Sylvia Titze & Bernd Haditsch & Thomas E Dorner & Willibald J Stronegger, 2015. "How Are Physical Activity Behaviors and Cardiovascular Risk Factors Associated with Characteristics of the Built and Social Residential Environment?," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-15, June.
    5. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    6. Berke, E.M. & Koepsell, T.D. & Moudon, A.V. & Hoskins, R.E. & Larson, E.B., 2007. "Association of the built environment with physical activity and obesity in older persons," American Journal of Public Health, American Public Health Association, vol. 97(3), pages 486-492.
    7. Crane, Randall & Crepeau, Richard, 1998. "Does Neighborhood Design Influence Travel?: Behavioral Analysis of Travel Diary and GIS Data," University of California Transportation Center, Working Papers qt4pj4s7t8, University of California Transportation Center.
    8. McNeill, Lorna Haughton & Kreuter, Matthew W. & Subramanian, S.V., 2006. "Social Environment and Physical activity: A review of concepts and evidence," Social Science & Medicine, Elsevier, vol. 63(4), pages 1011-1022, August.
    9. Antoni Colom & Miguel Fiol & Maurici Ruiz & Montserrat Compa & Marga Morey & Manuel Moñino & Dora Romaguera, 2018. "Association between Access to Public Open Spaces and Physical Activity in a Mediterranean Population at High Cardiovascular Risk," IJERPH, MDPI, vol. 15(6), pages 1-11, June.
    10. Keegan, T.H.M. & Hurley, S. & Goldberg, D. & Nelson, D.O. & Reynolds, P. & Bernstein, L. & Horn-Ross, P.L. & Gomez, S.L., 2012. "The association between neighborhood characteristics and body size and physical activity in the california teachers study cohort," American Journal of Public Health, American Public Health Association, vol. 102(4), pages 689-697.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ann Forsyth & Mary Hearst & J. Michael Oakes & Kathryn H. Schmitz, 2008. "Design and Destinations: Factors Influencing Walking and Total Physical Activity," Urban Studies, Urban Studies Journal Limited, vol. 45(9), pages 1973-1996, August.
    2. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    3. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    4. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    5. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    6. Souzanchi Kashani, Ebrahim & Roshani, Saeed, 2019. "Evolution of innovation system literature: Intellectual bases and emerging trends," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 68-80.
    7. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    8. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    9. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    10. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    11. Jiaxing Jiang & Lin Fan, 2022. "Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440211, January.
    12. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    13. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    14. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    15. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    16. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    17. Javier Asensio, 2002. "Transport Mode Choice by Commuters to Barcelona's CBD," Urban Studies, Urban Studies Journal Limited, vol. 39(10), pages 1881-1895, September.
    18. Rongying Zhao & Ju Wang, 2011. "Visualizing the research on pervasive and ubiquitous computing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 593-612, March.
    19. Sumeeta Srinivasan, 2002. "Quantifying Spatial Characteristics of Cities," Urban Studies, Urban Studies Journal Limited, vol. 39(11), pages 2005-2028, October.
    20. Chengliang Liu & Qinchang Gui, 2016. "Mapping intellectual structures and dynamics of transport geography research: a scientometric overview from 1982 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 159-184, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5625-:d:808956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.