IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p13948-d954533.html
   My bibliography  Save this article

Changes in Microeukaryotic Communities in the Grand Canal of China in Response to Floods

Author

Listed:
  • Wei Cai

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China
    Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Xikang Road #1, Nanjing 210098, China)

  • Huiyu Li

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China)

  • Xin Wen

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China)

  • Huang Huang

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China)

  • Guwang Chen

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China)

  • Haomiao Cheng

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China)

  • Hainan Wu

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China)

  • Zhe Piao

    (College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China)

Abstract

Floods are frequent natural disasters and could have serious impacts on aquatic environments. Eukaryotic communities in artificial canals influenced by floods remain largely unexplored. This study investigated the spatiotemporal variabilities among eukaryotes in response to floods in the Grand Canal, China. Generally, 781,078 sequence reads were obtained from 18S rRNA gene sequencing, with 304,721 and 476,357 sequence reads detected before and after flooding, respectively. Sediment samples collected after the floods exhibited a higher degree of richness and biodiversity but lower evenness than those before the floods. The eukaryotic communities changed from Fungi-dominated before floods to Stramenopile-dominated after floods. The spatial turnover of various species was the main contributor to the longitudinal construction of eukaryotes both before the floods ( β SIM = 0.7054) and after the floods ( β SIM = 0.6858). Some eukaryotic groups responded strongly to floods and might pose unpredictable risks to human health and environmental health. For example, Pezizomycetes, Catenulida, Glomeromycetes, Ellipura, etc. disappeared after the floods. Conversely, Lepocinclis , Synurale, Hibberdiales, Acineta , Diptera, and Rhinosporidium were all frequently detected after the floods, but not prior to the floods. Functional analyses revealed amino acid metabolism, carbohydrate metabolism, translation, and energy metabolism as the main metabolic pathways, predicting great potential for these processes in the Grand Canal.

Suggested Citation

  • Wei Cai & Huiyu Li & Xin Wen & Huang Huang & Guwang Chen & Haomiao Cheng & Hainan Wu & Zhe Piao, 2022. "Changes in Microeukaryotic Communities in the Grand Canal of China in Response to Floods," IJERPH, MDPI, vol. 19(21), pages 1-18, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13948-:d:954533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/13948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/13948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao-Jin Chen & Yang Shao & Ying-Jun Li & Li-An Lin & Yan Chen & Wei Tian & Bai-Lian Li & Yu-Ying Li, 2020. "Rhizosphere Bacterial Community Structure and Predicted Functional Analysis in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir in China During the Dry Period," IJERPH, MDPI, vol. 17(4), pages 1-18, February.
    2. Francesco Dottori & Wojciech Szewczyk & Juan-Carlos Ciscar & Fang Zhao & Lorenzo Alfieri & Yukiko Hirabayashi & Alessandra Bianchi & Ignazio Mongelli & Katja Frieler & Richard A. Betts & Luc Feyen, 2018. "Increased human and economic losses from river flooding with anthropogenic warming," Nature Climate Change, Nature, vol. 8(9), pages 781-786, September.
    3. Jie Li & Yujiao Sun & Xiaoyu Wang & Shangwei Xu, 2020. "Changes in Microbial Community Structures under Reclaimed Water Replenishment Conditions," IJERPH, MDPI, vol. 17(4), pages 1-15, February.
    4. Miaomiao Yan & Shengnan Chen & Tinglin Huang & Baoqin Li & Nan Li & Kaiwen Liu & Rongrong Zong & Yutian Miao & Xin Huang, 2020. "Community Compositions of Phytoplankton and Eukaryotes during the Mixing Periods of a Drinking Water Reservoir: Dynamics and Interactions," IJERPH, MDPI, vol. 17(4), pages 1-28, February.
    5. Tang, Feng & Wang, Li & Guo, Yiqiang & Fu, Meichen & Huang, Ni & Duan, Wensheng & Luo, Ming & Zhang, Jianjun & Li, Wang & Song, Wei, 2022. "Spatio-temporal variation and coupling coordination relationship between urbanisation and habitat quality in the Grand Canal, China," Land Use Policy, Elsevier, vol. 117(C).
    6. Xiaojie Li & Zhu Rao & Zhipeng Yang & Xiaochen Guo & Yi Huang & Jing Zhang & Feng Guo & Chen Liu, 2015. "A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China," IJERPH, MDPI, vol. 12(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Starzec & Sabina Kordana-Obuch & Daniel Słyś, 2023. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area," Sustainability, MDPI, vol. 15(10), pages 1-43, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Lin Liu & Zhu Rao & Yuan Wang & Hamidreza Arandiyan & Jie Gong & Ming Liang & Feng Guo, 2019. "Characteristics and Health Risk Assessment of Semi-Volatile Organic Contaminants in Rural Pond Water of Hebei Province," IJERPH, MDPI, vol. 16(22), pages 1-14, November.
    3. Bethany Robinson & Jonathan D. Herman, 2019. "A framework for testing dynamic classification of vulnerable scenarios in ensemble water supply projections," Climatic Change, Springer, vol. 152(3), pages 431-448, March.
    4. Jinxin Sun & Mei Han & Fanbiao Kong & Fan Wei & Xianglun Kong, 2023. "Spatiotemporal Analysis of the Coupling Relationship between Habitat Quality and Urbanization in the Lower Yellow River," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    5. Thomas Thaler, 2021. "Just retreat—how different countries deal with it: examples from Austria and England," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 412-419, September.
    6. Shala, Iliriana & Schumacher, Benno, 2022. "The impact of natural disasters on banks' impairment flow: Evidence from Germany," Discussion Papers 36/2022, Deutsche Bundesbank.
    7. Tao Yamamoto & So Kazama & Yoshiya Touge & Hayata Yanagihara & Tsuyoshi Tada & Takeshi Yamashita & Hiroyuki Takizawa, 2021. "Evaluation of flood damage reduction throughout Japan from adaptation measures taken under a range of emissions mitigation scenarios," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
    8. Qian Zhou & Naota Hanasaki & Shinichiro Fujimori, 2018. "Economic Consequences of Cooling Water Insufficiency in the Thermal Power Sector under Climate Change Scenarios," Energies, MDPI, vol. 11(10), pages 1-11, October.
    9. Yaobin Wang & Ruitao Zhao & Ying Li & Rong Yao & Ruoxue Wu & Wenlin Li, 2023. "Spatial and Temporal Heterogeneity of Rural Habitat Level Evolution and Its Influencing Factors—A Case Study of Rural Villages in Nature a Reserve of China," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    10. Lihua Chen & Yuan Ma, 2023. "How Do Ecological and Recreational Features of Waterfront Space Affect Its Vitality? Developing Coupling Coordination and Enhancing Waterfront Vitality," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    11. Wusheng Zhao & Peiji Shi & Ya Wan & Yan Yao, 2023. "Coupling and Coordination Relationship between Urbanization Quality and Ecosystem Services in the Upper Yellow River: A Case Study of the Lanzhou–Xining Urban Agglomeration, China," Land, MDPI, vol. 12(5), pages 1-20, May.
    12. Yanfang Lyu & Yun Xiang & Dong Wang, 2023. "Evaluating Indirect Economic Losses from Flooding Using Input–Output Analysis: An Application to China’s Jiangxi Province," IJERPH, MDPI, vol. 20(5), pages 1-17, March.
    13. Parry, Luke & Radel, Claudia & Adamo, Susana B. & Clark, Nigel & Counterman, Miriam & Flores-Yeffal, Nadia & Pons, Diego & Romero-Lankao, Paty & Vargo, Jason, 2019. "The (in)visible health risks of climate change," Social Science & Medicine, Elsevier, vol. 241(C).
    14. Martina Angela Caretta & Valeria Fanghella & Pam Rittelmeyer & Jaishri Srinivasan & Prajjwal K. Panday & Jagadish Parajuli & Ritu Priya & E. B. Uday Bhaskar Reddy & Cydney Kate Seigerman & Aditi Mukhe, 2023. "Migration as adaptation to freshwater and inland hydroclimatic changes? A meta-review of existing evidence," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
    15. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    16. Cheng Zhong & Yiming Bei & Hongliang Gu & Pengfei Zhang, 2022. "Spatiotemporal Evolution of Ecosystem Services in the Wanhe Watershed Based on Cellular Automata (CA)-Markov and InVEST Models," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    17. Xinyi Wang & Fenzhen Su & Fengqin Yan & Xinjia Zhang & Xuege Wang, 2022. "Effects of Coastal Urbanization on Habitat Quality: A Case Study in Guangdong-Hong Kong-Macao Greater Bay Area," Land, MDPI, vol. 12(1), pages 1-24, December.
    18. Yinmao Zhao & Zhansheng Li & Siyu Cai & Hao Wang, 2020. "Characteristics of extreme precipitation and runoff in the Xijiang River Basin at global warming of 1.5 °C and 2 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 669-688, April.
    19. Yang, Sheng & Zhang, Lu & Song, Dongran, 2022. "Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol," Energy, Elsevier, vol. 244(PA).
    20. M. Bermúdez & L. Cea & E. Van Uytven & P. Willems & J.F. Farfán & J. Puertas, 2020. "A Robust Method to Update Local River Inundation Maps Using Global Climate Model Output and Weather Typing Based Statistical Downscaling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4345-4362, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13948-:d:954533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.