IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i3p921-d484658.html
   My bibliography  Save this article

Simulation of Land Use Pattern Evolution from a Multi-Scenario Perspective: A Case Study of Suzhou City in Anhui Province, China

Author

Listed:
  • Rongtian Zhang

    (New Rural Development Research Institute, Yangzhou University, Yangzhou 225009, China)

  • Jianfei Lu

    (New Rural Development Research Institute, Yangzhou University, Yangzhou 225009, China)

Abstract

Land use/land cover change is a frontier issue in the field of geography research. Taking Suzhou City in Anhui Province as the research case, based on thematic mapper /enhanced thematic mapper+ (TM/ETM+) remote sensing data from 1998 to 2018, through the transfer matrix model and modified conversion of land use and its effects at small region extent (CLUE-S) model, the simulation of the land use landscape pattern evolution was studied from a multi-scenario perspective. The results showed that in the past 20 years, landscape patterns have undergone spatial–temporal conversion, which was mainly manifested as the evolution from a cultivated land landscape and other agricultural land to construction land, and there was some transformation between other landscape types, but the transformation degree was not significant. The spatial autocorrelation factor was introduced to correct the CLUE-S model, and the Kappa index reached 0.83, indicating that the modified CLUE-S model had a good simulation accuracy. (I) In the cultivated land protection scenario, limiting the conversion of basic farmland use, and by 2028, the proportion of cultivated land increased by 5.23%, distributed in eastern Suzhou City; (II) in the economic development scenario, by 2028, the construction land area increased by 14.58%, and was distributed in the surrounding regions of the built-up areas; and (III) in the ecological protection scenario, by 2028, wood land, water, and other ecological protection land area increased, and were distributed in the central and eastern part of Suzhou City. Research can provide useful decision-making support for land use optimization and remediation.

Suggested Citation

  • Rongtian Zhang & Jianfei Lu, 2021. "Simulation of Land Use Pattern Evolution from a Multi-Scenario Perspective: A Case Study of Suzhou City in Anhui Province, China," IJERPH, MDPI, vol. 18(3), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:921-:d:484658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/3/921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/3/921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Weiguo & Deng, Yue & Tang, Zhenghong & Lei, Xuan & Chen, Zheng, 2017. "Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models," Ecological Modelling, Elsevier, vol. 345(C), pages 30-40.
    2. Li Yu & Zhanqi Wang & Hongwei Zhang & Chao Wei, 2020. "Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    3. Darvishi, Asef & Yousefi, Maryam & Marull, Joan, 2020. "Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran)," Land Use Policy, Elsevier, vol. 99(C).
    4. Huang, Daquan & Huang, Jing & Liu, Tao, 2019. "Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries," Land Use Policy, Elsevier, vol. 82(C), pages 422-435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jundong Hu & Hong Wang & Yu Song, 2023. "Spatio-Temporal Evolution and Driving Factors of “Non-Grain Production” in Hubei Province Based on a Non-Grain Index," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    2. Fandi Meng & Zhi Zhou & Pengtao Zhang, 2023. "Multi-Objective Optimization of Land Use in the Beijing–Tianjin–Hebei Region of China Based on the GMOP-PLUS Coupling Model," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    3. Pengnan Xiao & Jie Xu & Chong Zhao, 2022. "Conflict Identification and Zoning Optimization of “Production-Living-Ecological” Space," IJERPH, MDPI, vol. 19(13), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruibo Wang & Xiaojun Xu & Yang Bai & Juha M. Alatalo & Zongbao Yang & Wei Yang & Zhangqian Yang, 2021. "Impacts of Urban Land Use Changes on Ecosystem Services in Dianchi Lake Basin, China," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    2. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    3. Zhiyuan Ma & Xuejun Duan & Lei Wang & Yazhu Wang & Jiayu Kang & Ruxian Yun, 2023. "A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China," Land, MDPI, vol. 12(2), pages 1-16, January.
    4. Wafaa Majeed Mutashar Al-Hameedi & Jie Chen & Cheechouyang Faichia & Biswajit Nath & Bazel Al-Shaibah & Ali Al-Aizari, 2022. "Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    5. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    6. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    7. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    8. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    9. Xiaoyang Liu & Weihao Shi & Sen Zhang, 2022. "Progress of Research on Urban Growth Boundary and Its Implications in Chinese Studies Based on Bibliometric Analysis," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    10. Xiang Pan & Peiji Shi & Na Wu, 2020. "Spatial–Temporal Interaction Relationship between Ecosystem Services and Urbanization of Urban Agglomerations in the Transitional Zone of Three Natural Regions," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    11. Somayeh Ahani & Hashem Dadashpoor, 2021. "Urban growth containment policies for the guidance and control of peri-urbanization: a review and proposed framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14215-14244, October.
    12. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    13. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    14. Kang Liu & Chaozheng Zhang & Han Zhang & Hao Xu & Wen Xia, 2023. "Spatiotemporal Variation and Dynamic Simulation of Ecosystem Carbon Storage in the Loess Plateau Based on PLUS and InVEST Models," Land, MDPI, vol. 12(5), pages 1-18, May.
    15. Jinfeng Wang & Ya Li & Sheng Wang & Qing Li & Lingfeng Li & Xiaoling Liu, 2023. "Assessment of Multiple Ecosystem Services and Ecological Security Pattern in Shanxi Province, China," IJERPH, MDPI, vol. 20(6), pages 1-18, March.
    16. Yongqiang Liu & Shuang Wang & Zipeng Chen & Shuangshuang Tu, 2022. "Research on the Response of Ecosystem Service Function to Landscape Pattern Changes Caused by Land Use Transition: A Case Study of the Guangxi Zhuang Autonomous Region, China," Land, MDPI, vol. 11(5), pages 1-20, May.
    17. Xue Li & Wen Li & Yu Gao, 2023. "Multi-Scenario Simulation of Green Space Landscape Pattern in Harbin City Based on FLUS Model," IJERPH, MDPI, vol. 20(5), pages 1-26, February.
    18. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.
    19. Biao Zhang & Dian Shao & Zhonghu Zhang, 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-36, May.
    20. Haiyan Meng & Yi Hu & Zuoji Dong, 2023. "Landscape Pattern Change and Ecological Effect in a Typical Mountain–Oasis–Desert Region in the Northwest Region of China," IJERPH, MDPI, vol. 20(5), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:921-:d:484658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.