IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1588-d326803.html
   My bibliography  Save this article

Understanding the Sociocognitive Process of Construction Workers’ Unsafe Behaviors: An Agent-Based Modeling Approach

Author

Listed:
  • Gui Ye

    (School of Management Science and Real Estate, Chongqing University; Chongqing 400045, China
    The International Research Center for Sustainable Built Environment, Chongqing University, Chongqing 400045, China
    Modern project management research centre, Chongqing University, Chongqing 400045, China)

  • Hongzhe Yue

    (School of Management Science and Real Estate, Chongqing University; Chongqing 400045, China
    The International Research Center for Sustainable Built Environment, Chongqing University, Chongqing 400045, China)

  • Jingjing Yang

    (School of Management Science and Real Estate, Chongqing University; Chongqing 400045, China)

  • Hongyang Li

    (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
    State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China)

  • Qingting Xiang

    (School of Management Science and Real Estate, Chongqing University; Chongqing 400045, China)

  • Yuan Fu

    (School of Management Science and Real Estate, Chongqing University; Chongqing 400045, China)

  • Can Cui

    (School of Management Science and Real Estate, Chongqing University; Chongqing 400045, China)

Abstract

Previous literature has recognized that workers’ unsafe behavior is the combined result of both isolated individual cognitive processes and their interaction with others. Based on the consideration of both individual cognitive factors and social organizational factors, this paper aims to develop an Agent-Based Modeling (ABM) approach to explore construction workers’ sociocognitive processes under the interaction with managers, coworkers, and foremen. The developed model is applied to explore the causes of cognitive failure of construction workers and the influence of social groups and social organizational factors on the workers’ unsafe behavior. The results indicate that (1) workers’ unsafe behaviors are gradually reduced with the interaction with managers, foremen, and workers; (2) the foreman is most influential in reducing workers’ unsafe behaviors, and their demonstration role can hardly be ignored; (3) the failure of sociocognitive process of construction workers is affected by many factors, and cognitive process errors could be corrected under social norms; and (4) among various social organizational factors, social identity has the most obvious effect on reducing workers’ unsafe behaviors, and preventive measures are more effective than reactive measures in reducing workers’ unsafe behaviors.

Suggested Citation

  • Gui Ye & Hongzhe Yue & Jingjing Yang & Hongyang Li & Qingting Xiang & Yuan Fu & Can Cui, 2020. "Understanding the Sociocognitive Process of Construction Workers’ Unsafe Behaviors: An Agent-Based Modeling Approach," IJERPH, MDPI, vol. 17(5), pages 1-33, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1588-:d:326803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Xicheng & Wang, Hongwei & Yin, Pei & Zhu, Hengmin, 2019. "Agent-based opinion formation modeling in social network: A perspective of social psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    2. Huakang Liang & Ken-Yu Lin & Shoujian Zhang, 2018. "Understanding the Social Contagion Effect of Safety Violations within a Construction Crew: A Hybrid Approach Using System Dynamics and Agent-Based Modeling," IJERPH, MDPI, vol. 15(12), pages 1-27, November.
    3. Peng Wang & Peng Wu & Jun Wang & Hung-Lin Chi & Xiangyu Wang, 2018. "A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training," IJERPH, MDPI, vol. 15(6), pages 1-18, June.
    4. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1041-1060.
    5. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    6. Burke, M.J. & Sarpy, S.A. & Smith-Crowe, K. & Chan-Serafin, S. & Salvador, R.O. & Islam, G., 2006. "Relative effectiveness of worker safety and health training methods," American Journal of Public Health, American Public Health Association, vol. 96(2), pages 315-324.
    7. Mengchun Zhang & Dongping Fang, 2013. "A cognitive analysis of why Chinese scaffolders do not use safety harnesses in construction," Construction Management and Economics, Taylor & Francis Journals, vol. 31(3), pages 207-222, March.
    8. Alexei Sharpanskykh & Sybert H. Stroeve, 2011. "An agent-based approach for structured modeling, analysis and improvement of safety culture," Computational and Mathematical Organization Theory, Springer, vol. 17(1), pages 77-117, March.
    9. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 997-1013.
    10. Tim Goles & Bandula Jayatilaka & Beena George & Linda Parsons & Valrie Chambers & David Taylor & Rebecca Brune, 2008. "Softlifting: Exploring Determinants of Attitude," Journal of Business Ethics, Springer, vol. 77(4), pages 481-499, February.
    11. Banus Kam Leung Low & Siu Shing Man & Alan Hoi Shou Chan & Saad Alabdulkarim, 2019. "Construction Worker Risk-Taking Behavior Model with Individual and Organizational Factors," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    12. Huakang Liang & Ken-Yu Lin & Shoujian Zhang & Yikun Su, 2018. "The Impact of Coworkers’ Safety Violations on an Individual Worker: A Social Contagion Effect within the Construction Crew," IJERPH, MDPI, vol. 15(4), pages 1-21, April.
    13. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    14. Iain Cameron & Roy Duff, 2007. "A critical review of safety initiatives using goal setting and feedback," Construction Management and Economics, Taylor & Francis Journals, vol. 25(5), pages 495-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guodong Ni & Yuanyuan Zhu & Ziyao Zhang & Yaning Qiao & Huaikun Li & Na Xu & Yongliang Deng & Zhenmin Yuan & Wenshun Wang, 2020. "Influencing Mechanism of Job Satisfaction on Safety Behavior of New Generation of Construction Workers Based on Chinese Context: The Mediating Roles of Work Engagement and Safety Knowledge Sharing," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    2. Qingfeng Meng & Wenyao Liu & Zhen Li & Xin Hu, 2021. "Influencing Factors, Mechanism and Prevention of Construction Workers’ Unsafe Behaviors: A Systematic Literature Review," IJERPH, MDPI, vol. 18(5), pages 1-22, March.
    3. Aminu Darda’u Rafindadi & Nasir Shafiq & Idris Othman & Miljan Mikić, 2023. "Mechanism Models of the Conventional and Advanced Methods of Construction Safety Training. Is the Traditional Method of Safety Training Sufficient?," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    4. Xin Ning & Jiwen Huang & Chunlin Wu & Tong Liu & Chao Wang, 2022. "The Double-Edged Sword of Safety Training for Safety Behavior: The Critical Role of Psychological Factors during COVID-19," IJERPH, MDPI, vol. 19(17), pages 1-17, September.
    5. Alessandra Binazzi & Davide Di Marzio & Marina Verardo & Enrica Migliore & Lucia Benfatto & Davide Malacarne & Carolina Mensi & Dario Consonni & Silvia Eccher & Guido Mazzoleni & Vera Comiati & Corrad, 2021. "Asbestos Exposure and Malignant Mesothelioma in Construction Workers—Epidemiological Remarks by the Italian National Mesothelioma Registry (ReNaM)," IJERPH, MDPI, vol. 19(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aminu Darda’u Rafindadi & Nasir Shafiq & Idris Othman & Miljan Mikić, 2023. "Mechanism Models of the Conventional and Advanced Methods of Construction Safety Training. Is the Traditional Method of Safety Training Sufficient?," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    2. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    4. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    5. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    6. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    7. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    8. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Shirley, Rachel Benish & Smidts, Carol, 2018. "Bridging the simulator gap: Measuring motivational bias in digital nuclear power plant environments," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 191-209.
    11. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    12. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    13. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    15. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    16. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    18. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1588-:d:326803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.