IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i4p1446-d324348.html
   My bibliography  Save this article

Evaluation and Analysis of Water Quality of Marine Aquaculture Area

Author

Listed:
  • Xianyu Zhang

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China)

  • Yingqi Zhang

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China)

  • Qian Zhang

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China)

  • Peiwu Liu

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China)

  • Rui Guo

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China)

  • Shengyi Jin

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China)

  • Jiawen Liu

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China)

  • Lei Chen

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China)

  • Zhen Ma

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China)

  • Ying Liu

    (Dalian Ocean University, College of Marine Sciences, Dalian 116023, China
    Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China)

Abstract

In the rapid development of marine aquaculture, the water quality of aquatic environments is regarded as a main limiting factor. Therefore, it is necessary to assess the water quality and environmental conditions in marine aquaculture areas and find out the main influencing factors regarding damage to the water quality environment. In the present research, pond aquaculture and cage aquaculture areas were sampled in May, August and November in 2018. Nine water quality indicators were detected, including pH, temperature, salinity, dissolved oxygen, molybdate-reactive phosphorus, chemical oxygen demand, chlorophyll a, inorganic nitrogen and antibiotic resistance genes (ARGs). Principal component analysis (PCA) was used to analyze the water quality conditions, spatial–temporal changes, and the driving factors in pond and cage aquaculture areas. The results showed that three main components were extracted from the pond aquaculture area, which explained 66.82% of the results, the most relevant factors are salinity, dissolved oxygen and ARGs. For the cage aquaculture area, three main components were extracted which can account for 72.99% of the results, the most relevant factors are chlorophyll a, salinity and dissolved oxygen. The comprehensive scores of the principal components indicated that the heaviest polluted months in pond and aquaculture areas were August and November, respectively. The water quality of the pond aquaculture area is mainly limited by the volume of the pond, while aquaculture activities and seasonality are the main factors for cage aquaculture. ARGs in cage culture areas showed more variety and frequency compared with pond culture areas, which indicated that terrestrial input might be one of the sources for ARGs occurrence. The results would be helpful for the relevant authorities to select water quality monitoring parameters in marine aquaculture areas.

Suggested Citation

  • Xianyu Zhang & Yingqi Zhang & Qian Zhang & Peiwu Liu & Rui Guo & Shengyi Jin & Jiawen Liu & Lei Chen & Zhen Ma & Ying Liu, 2020. "Evaluation and Analysis of Water Quality of Marine Aquaculture Area," IJERPH, MDPI, vol. 17(4), pages 1-15, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1446-:d:324348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/4/1446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/4/1446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    2. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    3. Finch, Brian Karl & Beck, Audrey N., 2011. "Socio-economic status and z-score standardized height-for-age of U.S.-born children (ages 2-6)," Economics & Human Biology, Elsevier, vol. 9(3), pages 272-276, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Lang & Lijun Gu & Zhiying Chen & Chunhui Niu & Lin Li & Jinyuan Ma, 2023. "Ecological Quality Status Evaluation of Port Sea Areas Based on EW-GRA-TOPSIS Model," Sustainability, MDPI, vol. 15(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    2. Fernando Castelló-Sirvent & Pablo Pinazo-Dallenbach, 2021. "Corruption Shock in Mexico: fsQCA Analysis of Entrepreneurial Intention in University Students," Mathematics, MDPI, vol. 9(14), pages 1-31, July.
    3. Matkovskyy, Roman, 2013. "To the Problem of Financial Safety Estimation: the Index of Financial Safety of Turkey," MPRA Paper 47673, University Library of Munich, Germany.
    4. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    5. Rodríguez-Fuentes, Carlos Javier & Hernández-López, Montserrat, 1997. "Análisis de diferencias estructurales interregionales determinantes en el impacto de la política monetaria," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 7, pages 141-157, Junio.
    6. Ivaldi, Enrico, 2013. "Proposal of a country risk index based on a factorial analysis - Una proposta di indice di rischio paese basato sull’analisi fattoriale: una applicazione ai paesi del sud del Mediterraneo e ai paesi d," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 66(2), pages 231-249.
    7. Vesselina Dimitrova & Georgi Marinov & Lino Manosperta, 2019. "Developing Low-Carbon Tourism In Puglia: Case Study Of I. Archeo.S Project," Economic Archive, D. A. Tsenov Academy of Economics, Svishtov, Bulgaria, issue 2 Year 20, pages 16-32.
    8. Noor Nahar Begum & Sarabia Rahman, 2016. "An Analytical Study on Investors¡¯ Preference towards Mutual Fund Investment: A Study in Dhaka City, Bangladesh," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(10), pages 184-191, October.
    9. Coppola, A. & Ianuario, S. & Chinnici, G. & Di Vita, G. & Pappalardo, G. & D'Amico, D., 2018. "Endogenous and Exogenous Determinants of Agricultural Productivity: What Is the Most Relevant for the Competitiveness of the Italian Agricultural Systems?," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(2).
    10. De Nicola, Arianna & Gitto, Simone & Mancuso, Paolo, 2013. "Airport quality and productivity changes: A Malmquist index decomposition assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 67-75.
    11. Ronan Van Rossem & Isabelle Pannecoucke, 2019. "Poverty and a child’s height development during early childhood: A double disadvantage? A study of the 2006–2009 birth cohorts in Flanders," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-16, January.
    12. Henk Kiers, 1994. "Simplimax: Oblique rotation to an optimal target with simple structure," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 567-579, December.
    13. Dolores Gallardo-Vázquez, 2023. "Attributes influencing responsible tourism consumer choices: Sustainable local food and drink, health-related services, and entertainment," Oeconomia Copernicana, Institute of Economic Research, vol. 14(2), pages 645-686, June.
    14. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    15. Edyta Puskarczyk, 2020. "Application of Multivariate Statistical Methods and Artificial Neural Network for Facies Analysis from Well Logs Data: an Example of Miocene Deposits," Energies, MDPI, vol. 13(7), pages 1-18, March.
    16. Iversen, Sara V. & Naomi, van der Velden & Convery, Ian & Mansfield, Lois & Holt, Claire D.S., 2022. "Why understanding stakeholder perspectives and emotions is important in upland woodland creation – A case study from Cumbria, UK," Land Use Policy, Elsevier, vol. 114(C).
    17. Ponzoa, José M. & Gómez, Andrés & Mas, José M., 2023. "EU27 and USA institutions in the digital ecosystem: Proposal for a digital presence measurement index," Journal of Business Research, Elsevier, vol. 154(C).
    18. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    19. Xia Vivian Zhou & Kimberly L. Jensen & James A. Larson & Burton C. English, 2021. "Farmer Interest in and Willingness to Grow Pennycress as an Energy Feedstock," Energies, MDPI, vol. 14(8), pages 1-16, April.
    20. Matkovskyy, Roman & Bouraoui, Taoufik & Hammami, Helmi, 2016. "Analysing the financial strength of Tunisia: An approach to estimate an index of financial safety," Research in International Business and Finance, Elsevier, vol. 38(C), pages 485-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1446-:d:324348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.