IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i4p1267-d321338.html
   My bibliography  Save this article

Shallow Groundwater Quality and Its Controlling Factors in the Su-Xi-Chang Region, Eastern China

Author

Listed:
  • Jianwei Bu

    (Technology Innovation Center of Geo-Environmental Restoration, Ministry of Natural Resources, No. 388 Lumo Road, Wuhan 430074, China
    School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, Wuhan 430078, China)

  • Ziyong Sun

    (Technology Innovation Center of Geo-Environmental Restoration, Ministry of Natural Resources, No. 388 Lumo Road, Wuhan 430074, China
    School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, Wuhan 430078, China)

  • Rui Ma

    (Technology Innovation Center of Geo-Environmental Restoration, Ministry of Natural Resources, No. 388 Lumo Road, Wuhan 430074, China
    School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, Wuhan 430078, China)

  • Yunde Liu

    (School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, Wuhan 430078, China)

  • Xulong Gong

    (Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources, No. 700 Zhujiang Road, Nanjing 210018, China)

  • Zhao Pan

    (School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, Wuhan 430078, China)

  • Wenhao Wei

    (Geological Survey, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, China)

Abstract

Understanding factors influencing groundwater quality is critical to the development of best management practices at the large watershed scale. In this study, the shallow groundwater (10–20 m depth) in the Su-Xi-Chang region, eastern China, was investigated as part of a monitoring program from 2007 to 2008 to analyze the regional groundwater quality as well as the hydrogeochemical processes and their controlling factors. Conventional physicochemical water parameters (pH, turbidity, electrical conductivity, dissolved oxygen, total phosphorus), major cations (Na + , Ca 2+ , Mg 2+ and NH 4 + ) and anions (Cl − , NO 3 − and SO 4 2− ) were measured. Hydrochemical methods and multivariate statistical methods were applied to analyze the hydrogeochemical signatures, origins, the similarities among the variables and to identify the main pollution sources in the groundwater. The results showed that (1) the concentrations of TDS (224.89–1086.70 mg/L) and turbidity (0.1–18.60 NTU) were higher than the class II groundwater quality standards in China and the WHO drinking water standards, (2) there were extremely high concentrations of ammonia (0.01–32.90 mg/L), with a mean value of 0.72 mg/L and (3) the nitrate concentrations (average value of 22.07 mg/L) exceeded the class III groundwater quality standards. The study also provided evidence that weathering, dissolution of carbonate, halite and silicate and cation exchange were the possible primary hydrogeochemical control mechanisms in the groundwater. The sources of ammonia, total phosphorus, sulfates and nitrates included rock–water interactions and anthropogenic activities. The groundwater administration of pollution sinks and sources, long-term legal frameworks and economic incentives should be improved to optimize watershed scale management in the context of rapid development in China.

Suggested Citation

  • Jianwei Bu & Ziyong Sun & Rui Ma & Yunde Liu & Xulong Gong & Zhao Pan & Wenhao Wei, 2020. "Shallow Groundwater Quality and Its Controlling Factors in the Su-Xi-Chang Region, Eastern China," IJERPH, MDPI, vol. 17(4), pages 1-18, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1267-:d:321338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/4/1267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/4/1267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
    2. Alexander Ly & Maarten Marsman & Eric†Jan Wagenmakers, 2018. "Analytic posteriors for Pearson's correlation coefficient," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(1), pages 4-13, February.
    3. Jianwei Bu & Ziyong Sun & Aiguo Zhou & Youning Xu & Rui Ma & Wenhao Wei & Meng Liu, 2016. "Heavy Metals in Surface Soils in the Upper Reaches of the Heihe River, Northeastern Tibetan Plateau, China," IJERPH, MDPI, vol. 13(3), pages 1-19, February.
    4. Xiaosi Su & Huang Wang & Yuling Zhang, 2013. "Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3025-3034, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianwei Bu & Wei Liu & Zhao Pan & Kang Ling, 2020. "Comparative Study of Hydrochemical Classification Based on Different Hierarchical Cluster Analysis Methods," IJERPH, MDPI, vol. 17(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    3. B. Jianmin & W. Yu & Z. Juan, 2015. "Arsenic and fluorine in groundwater in western Jilin Province, China: occurrence and health risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1903-1914, July.
    4. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    5. Yang Jin & Quanping Zhou & Xiaolong Wang & Hong Zhang & Guoqiang Yang & Ting Lei & Shijia Mei & Hai Yang & Lin Liu & Hui Yang & Jinsong Lv & Yuehua Jiang, 2022. "Heavy Metals in the Mainstream Water of the Yangtze River Downstream: Distribution, Sources and Health Risk Assessment," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    6. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Leah Grout & Simon Hales & Nigel French & Michael G. Baker, 2018. "A Review of Methods for Assessing the Environmental Health Impacts of an Agricultural System," IJERPH, MDPI, vol. 15(7), pages 1-27, June.
    8. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    9. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    10. Gou, Qiqi & Zhu, Yonghua & Horton, Robert & Lü, Haishen & Wang, Zhenlong & Su, Jianbin & Cui, Chenyun & Zhang, Haoqiang & Wang, Xiaoyi & Zheng, Jingyao & Yuan, Fei, 2020. "Effect of climate change on the contribution of groundwater to the root zone of winter wheat in the Huaibei Plain of China," Agricultural Water Management, Elsevier, vol. 240(C).
    11. Wujuan Mi & Minghua Zhang & Yuan Li & Xiaoxuan Jing & Wei Pan & Xin Xing & Chen Xiao & Qiusheng He & Yonghong Bi, 2023. "Spatio-Temporal Pattern of Groundwater Nitrate-Nitrogen and Its Potential Human Health Risk in a Severe Water Shortage Region," Sustainability, MDPI, vol. 15(19), pages 1-12, September.
    12. Zhiyun Zhou & Haoling Liao & Hua Li, 2023. "The Symbiotic Mechanism of the Influence of Productive and Transactional Agricultural Social Services on the Use of Soil Testing and Formula Fertilization Technology by Tea Farmers," Agriculture, MDPI, vol. 13(9), pages 1-26, August.
    13. Morales Martínez, Jorge Luis & Segovia-Domínguez, Ignacio & Rodríguez, Israel Quiros & Horta-Rangel, Francisco Antonio & Sosa-Gómez, Guillermo, 2021. "A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    14. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    15. Shugang Li & Hui Chen & Xin Liu & Jiayi Li & Kexin Peng & Ziming Wang, 2023. "Online Personalized Learning Path Recommendation Based on Saltatory Evolution Ant Colony Optimization Algorithm," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    16. Robert Duda & Robert Zdechlik & Jarosław Kania, 2021. "Semiquantitative Risk Assessment Method for Groundwater Source Protection Using a Process-based Interdisciplinary Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3373-3394, August.
    17. Li, Xudong & Zhao, Yong & Xiao, Weihua & Yang, Mingzhi & Shen, Yanjun & Min, Leilei, 2017. "Soil moisture dynamics and implications for irrigation of farmland with a deep groundwater table," Agricultural Water Management, Elsevier, vol. 192(C), pages 138-148.
    18. Gwon-Soo Bahn & Byung-Chul An, 2020. "Analysis of Environmental Purification Effect of Riparian Forest with Poplar Trees for Ecological Watershed Management: A Case Study in the Floodplain of the Dam Reservoir in Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    19. Chen, Shuai & Mao, Xiaomin & Shang, Songhao, 2022. "Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils," Agricultural Water Management, Elsevier, vol. 266(C).
    20. João Vitor Leme & Wallace Casaca & Marilaine Colnago & Maurício Araújo Dias, 2020. "Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models," Energies, MDPI, vol. 13(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1267-:d:321338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.