IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i15p2808-d255309.html
   My bibliography  Save this article

Impact of an Extreme Winter Storm Event on the Coagulation/Flocculation Processes in a Prototype Surface Water Treatment Plant: Causes and Mitigating Measures

Author

Listed:
  • Fuguo Qiu

    (Key Laboratory of Urban Stormwater System and Water Environment (The Ministry of Education of China), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    Environmental Engineering Program, Department of Civil Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA)

  • Huadong Lv

    (Key Laboratory of Urban Stormwater System and Water Environment (The Ministry of Education of China), Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Xiao Zhao

    (College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Dongye Zhao

    (Environmental Engineering Program, Department of Civil Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA)

Abstract

Climate change has often caused failure in water treatment operations. In this study, we report a real case study at a major surface water treatment plant in Alabama, USA. Following a severe winter storm, the effluent water turbidity surged to >15.00 Nephelometric Turbidity Units (NTU), far exceeding the 0.30 NTU standard. As a result, the plant operation had to be shut down for three days, causing millions of dollars of losses and affecting tens of thousands of people. Systematic jar tests were carried out with sediment samples from 22 upstream locations. The coagulation and settleability of sediment particles were tested under simulated storm weather conditions, i.e., low temperature (7 °C) and in the presence of various types and concentrations of natural organic matter (NOM) that was extracted from the local sediments. Experimental results proved that elevated NOM (6.14 mg·L −1 as Total Organic Carbon, TOC) in raw water was the root cause for the failure of the plant while the low temperature played a minor but significant role. Pre-oxidation with permanganate and/or elevated coagulant dosage were found effective to remove TOC in raw water and to prevent similar treatment failure. Moreover, we recommend that chemical dosages should be adjusted based on the TOC level in raw water, and a reference dosage of 0.29 kg-NaMnO 4 /kg-TOC and 19 kg- polyaluminum chloride (PACl) /kg-TOC would be appropriate to cope with future storm water impacts. To facilitate timely adjustment of the chemical dosages, the real time key water quality parameters should be monitored, such as turbidity, TOC, Ultraviolet (UV) absorbance, pH, and color. The findings can guide other treatment operators to deal with shock changes in the raw water quality resulting from severe weather or other operating conditions.

Suggested Citation

  • Fuguo Qiu & Huadong Lv & Xiao Zhao & Dongye Zhao, 2019. "Impact of an Extreme Winter Storm Event on the Coagulation/Flocculation Processes in a Prototype Surface Water Treatment Plant: Causes and Mitigating Measures," IJERPH, MDPI, vol. 16(15), pages 1-15, August.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2808-:d:255309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/15/2808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/15/2808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lydia S. Abebe & Xinyu Chen & Mark D. Sobsey, 2016. "Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment," IJERPH, MDPI, vol. 13(3), pages 1-11, February.
    2. Yang Yu & Peifang Wang & Chao Wang & Xun Wang & Bin Hu, 2018. "Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary," IJERPH, MDPI, vol. 15(10), pages 1-19, September.
    3. Avhashoni D. Nefale & Ilunga Kamika & Chikwelu L. Obi & Maggy NB Momba, 2017. "The Limpopo Non-Metropolitan Drinking Water Supplier Response to a Diagnostic Tool for Technical Compliance," IJERPH, MDPI, vol. 14(7), pages 1-19, July.
    4. Muhammad Ali Inam & Rizwan Khan & Du Ri Park & Sarfaraz Khan & Ahmed Uddin & Ick Tae Yeom, 2019. "Complexation of Antimony with Natural Organic Matter: Performance Evaluation during Coagulation-Flocculation Process," IJERPH, MDPI, vol. 16(7), pages 1-16, March.
    5. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alicja Knap-Bałdyga & Monika Żubrowska-Sudoł, 2023. "Natural Organic Matter Removal in Surface Water Treatment via Coagulation—Current Issues, Potential Solutions, and New Findings," Sustainability, MDPI, vol. 15(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Argyrios Periferakis & Ana Caruntu & Aristodemos-Theodoros Periferakis & Andreea-Elena Scheau & Ioana Anca Badarau & Constantin Caruntu & Cristian Scheau, 2022. "Availability, Toxicology and Medical Significance of Antimony," IJERPH, MDPI, vol. 19(8), pages 1-29, April.
    2. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    3. Hemen Mark Butu & Yongwon Seo & Jeung Soo Huh, 2020. "Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    4. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    5. Michael Berlemann & Gerit Vogt, 2007. "Kurzfristige Wachstumseffekte von Naturkatastrophen," ifo Working Paper Series 52, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    6. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    7. Berlemann, Michael, 2015. "Hurricane Risk, Happiness and Life Satisfaction. Some Empirical Evidence on the Indirect Effects of Natural Disasters," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113073, Verein für Socialpolitik / German Economic Association.
    8. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    9. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    10. Teodor Kitczak & Heidi Jänicke & Marek Bury & Ryszard Malinowski, 2021. "The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    11. Amin Owrangi & Robert Lannigan & Slobodan Simonovic, 2015. "Mapping climate change-caused health risk for integrated city resilience modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 67-88, May.
    12. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    13. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "A “Green Revolution” for Sub-Saharan Africa? Challenges and Opportunities," EconPol Policy Brief 54, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    14. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    15. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    16. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "Eine „Grüne Revolution“ in Subsahara-Afrika? Herausforderungen und Chancen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 76(05), pages 29-33, May.
    17. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2014. "Release of hazardous substances in flood events: Damage model for horizontal cylindrical vessels," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 125-145.
    18. Insa Thiele-Eich & Katrin Burkart & Clemens Simmer, 2015. "Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    19. M. Abdellatif & W. Atherton & R. Alkhaddar & Y. Osman, 2015. "Flood risk assessment for urban water system in a changing climate using artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1059-1077, November.
    20. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2808-:d:255309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.