IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v4y2024i1p10-167d1346714.html
   My bibliography  Save this article

Hydromorphic Impact of Matera’s Urban Area

Author

Listed:
  • Ruggero Ermini

    (Department of European and Mediterranean Cultures, Università degli Studi della Basilicata, DICEM, 75100 Matera, Italy)

  • Carmen Fattore

    (DICEM (Dipartimento delle Culture Europee e del Mediterraneo), Università degli Studi della Basilicata, SI, 85100 Potenza, Italy)

  • Amir Aubed Zoubi

    (Industrial Ecology, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Urban transformations change land use, permeability, and morphology of the areas involved in the evolution process; this, consequently, modifies the impact produced by the precipitation phenomena and increases the risk of flooding or uncontrolled runoff in different areas.The proposed watershed hydrologic approach enables us to consider the morphology of the territory together with the transformations implemented by human activities, and this allows us to evaluate the effects of each area on neighboring areas, emphasizes the hydrological roles of upper, intermediate, and lower parts, and reveals urban and non-urban connections. This elucidates hydromorphic complexities in urban transformations and assesses climate change adaptability. The suggested methodology has been implemented in the urban district of “Sasso Caveoso” within the city of Matera. This application facilitates a quantitative synthesis of the contextual response, allowing for an analysis across various scenarios and offering decision-support tools of practical utility.

Suggested Citation

  • Ruggero Ermini & Carmen Fattore & Amir Aubed Zoubi, 2024. "Hydromorphic Impact of Matera’s Urban Area," Geographies, MDPI, vol. 4(1), pages 1-16, February.
  • Handle: RePEc:gam:jgeogr:v:4:y:2024:i:1:p:10-167:d:1346714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/4/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/4/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walker Ashley & Mace Bentley & J. Stallins, 2012. "Urban-induced thunderstorm modification in the Southeast United States," Climatic Change, Springer, vol. 113(2), pages 481-498, July.
    2. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    3. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    4. E. M. Fischer & R. Knutti, 2016. "Observed heavy precipitation increase confirms theory and early models," Nature Climate Change, Nature, vol. 6(11), pages 986-991, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    2. Yung-Jaan Lee, 2022. "Hybrid Ecological Footprint of Taipei," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    3. Massimo Palme & Agnese Salvati, 2020. "Sustainability and Urban Metabolism," Sustainability, MDPI, vol. 12(1), pages 1-3, January.
    4. Badri Bhakta Shrestha & Edangodage Duminda Pradeep Perera & Shun Kudo & Mamoru Miyamoto & Yusuke Yamazaki & Daisuke Kuribayashi & Hisaya Sawano & Takahiro Sayama & Jun Magome & Akira Hasegawa & Tomoki, 2019. "Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 157-192, May.
    5. Yun-Yun Ko & Yin-Hao Chiu, 2020. "Empirical Study of Urban Development Evaluation Indicators Based on the Urban Metabolism Concept," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    6. Koenraad Danneels, 2023. "THE POLITICS OF URBAN ECOLOGY: Paul Duvigneaud and the Rise of Ecological Urbanism in Brussels during the 1970s," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 47(5), pages 792-808, September.
    7. Daniela Perrotti, 2019. "Evaluating urban metabolism assessment methods and knowledge transfer between scientists and practitioners: A combined framework for supporting practice-relevant research," Environment and Planning B, , vol. 46(8), pages 1458-1479, October.
    8. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    9. Gianina Cojoc & Gheorghe Romanescu & Alina Tirnovan, 2015. "Exceptional floods on a developed river: case study for the Bistrita River from the Eastern Carpathians (Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1421-1451, July.
    10. Jennie Moore, 2015. "Ecological Footprints and Lifestyle Archetypes: Exploring Dimensions of Consumption and the Transformation Needed to Achieve Urban Sustainability," Sustainability, MDPI, vol. 7(4), pages 1-17, April.
    11. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    12. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    13. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    14. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    15. Mario Coccia, 2019. "Metabolism of Public Research Organizations: How Do Laboratories Consume State Subsidies?," Public Organization Review, Springer, vol. 19(4), pages 473-491, December.
    16. Sina Shaddel & Hamidreza Bakhtiary-Davijany & Christian Kabbe & Farbod Dadgar & Stein W. Østerhus, 2019. "Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies," Sustainability, MDPI, vol. 11(12), pages 1-12, June.
    17. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Eric J. Chaisson, 2022. "Energy Budgets of Evolving Nations and Their Growing Cities," Energies, MDPI, vol. 15(21), pages 1-50, November.
    19. Libera Amenta & Lei Qu, 2020. "Experimenting with Circularity When Designing Contemporary Regions: Adaptation Strategies for More Resilient and Regenerative Metropolitan Areas of Amsterdam and Naples Developed in University Studio ," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    20. Friederike E. L. Otto & Petra Minnerop & Emmanuel Raju & Luke J. Harrington & Rupert F. Stuart‐Smith & Emily Boyd & Rachel James & Richard Jones & Kristian C. Lauta, 2022. "Causality and the fate of climate litigation: The role of the social superstructure narrative," Global Policy, London School of Economics and Political Science, vol. 13(5), pages 736-750, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:4:y:2024:i:1:p:10-167:d:1346714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.