IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v13y2022i4p55-d884065.html
   My bibliography  Save this article

A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks

Author

Listed:
  • Jovic Aaron S. Caasi

    (Division of Mathematics and Computer Science, University of Guam, Mangilao, GU 96913, USA)

  • Brian M. Joseph

    (Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA)

  • Heera J. Kodiyamplakkal

    (College of Arts and Sciences, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235, USA)

  • Jaelene Renae U. Manibusan

    (School of Engineering, University of Guam, Mangilao, GU 96913, USA)

  • Leslie J. Camacho Aquino

    (Division of Mathematics and Computer Science, University of Guam, Mangilao, GU 96913, USA)

  • Hyunju Oh

    (Division of Mathematics and Computer Science, University of Guam, Mangilao, GU 96913, USA)

  • Jan Rychtář

    (Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, USA)

  • Dewey Taylor

    (Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, USA)

Abstract

Yellow fever is a vector-borne acute viral hemorrhagic disease. It is endemic in tropical areas of Africa and Latin America but demonstrated the potential for international spread during the 2016 outbreak in Luanda, Angola. Yellow fever can be prevented by vaccination, vector control, and avoiding mosquito bites. To account for human behavior in disease dynamics, we add a game-theoretic component to a recent compartmental model of yellow fever transmission. The self-interested individuals evaluate the risks of contracting yellow fever and choose to vaccinate or avoid the bites to minimize the overall costs. We find the Nash equilibria, the optimal levels of vaccination and bite protections if the individuals can decide on the use of only one of the prevention methods as well as when they can decide on the use of both of them. In the later case, we show that vaccination is the preferred method of protection from the individual standpoint and, in the Nash equilibrium, individuals use vaccination only. Our model predicts the vaccination coverage in Angola to be around 65%, which is in reasonable agreement with the empirical value of 68%. We also study whether voluntary prevention can lead to the elimination of the disease in endemic areas. We show that voluntary vaccination alone is not enough to mitigate the risks of outbreaks, suggesting that a mandatory vaccination policy is necessary.

Suggested Citation

  • Jovic Aaron S. Caasi & Brian M. Joseph & Heera J. Kodiyamplakkal & Jaelene Renae U. Manibusan & Leslie J. Camacho Aquino & Hyunju Oh & Jan Rychtář & Dewey Taylor, 2022. "A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks," Games, MDPI, vol. 13(4), pages 1-14, August.
  • Handle: RePEc:gam:jgames:v:13:y:2022:i:4:p:55-:d:884065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/13/4/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/13/4/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kristen Scheckelhoff & Ayesha Ejaz & Igor V. Erovenko & Jan Rychtář & Dewey Taylor, 2021. "Optimal Voluntary Vaccination of Adults and Adolescents Can Help Eradicate Hepatitis B in China," Games, MDPI, vol. 12(4), pages 1-13, October.
    2. Cheol Yong Han & Habeeb Issa & Jan Rychtář & Dewey Taylor & Nancy Umana, 2020. "A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(11), pages 1-19, November.
    3. Iwamura, Yoshiro & Tanimoto, Jun, 2018. "Realistic decision-making processes in a vaccination game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 236-241.
    4. Jabili Angina & Anish Bachhu & Eesha Talati & Rishi Talati & Jan Rychtář & Dewey Taylor, 2022. "Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever," Dynamic Games and Applications, Springer, vol. 12(1), pages 133-146, March.
    5. Matthew R Behrend & María-Gloria Basáñez & Jonathan I D Hamley & Travis C Porco & Wilma A Stolk & Martin Walker & Sake J de Vlas & for the NTD Modelling Consortium, 2020. "Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(4), pages 1-17, April.
    6. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristen Scheckelhoff & Ayesha Ejaz & Igor V. Erovenko & Jan Rychtář & Dewey Taylor, 2021. "Optimal Voluntary Vaccination of Adults and Adolescents Can Help Eradicate Hepatitis B in China," Games, MDPI, vol. 12(4), pages 1-13, October.
    2. Jabili Angina & Anish Bachhu & Eesha Talati & Rishi Talati & Jan Rychtář & Dewey Taylor, 2022. "Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever," Dynamic Games and Applications, Springer, vol. 12(1), pages 133-146, March.
    3. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    5. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    6. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    7. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    11. Soya Miyoshi & Marko Jusup & Petter Holme, 2021. "Flexible imitation suppresses epidemics through better vaccination," Journal of Computational Social Science, Springer, vol. 4(2), pages 709-720, November.
    12. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 41-55.
    13. Ching-I Huang & Ronald E. Crump & Paul E. Brown & Simon E. F. Spencer & Erick Mwamba Miaka & Chansy Shampa & Matt J. Keeling & Kat S. Rock, 2022. "Identifying regions for enhanced control of gambiense sleeping sickness in the Democratic Republic of Congo," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Vivekanandhan, Gayathri & Nourian Zavareh, Mahdi & Natiq, Hayder & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Svetec, Milan, 2022. "Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    15. Zhang, Hong, 2022. "Effects of stubborn players and noise on the evolution of cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    16. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Zheng, Xiangcheng & Wang, Hong & Fu, Hongfei, 2020. "Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Choi, K. & Choi, Hoyun & Kahng, B., 2022. "COVID-19 epidemic under the K-quarantine model: Network approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Ameen, I. & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2020. "An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    20. Wang, Jianwei & He, Jialu & Yu, Fengyuan & Guo, Yuxin & Li, Meiyu & Chen, Wei, 2020. "Realistic decision-making process with memory and adaptability in evolutionary vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:13:y:2022:i:4:p:55-:d:884065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.