IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i5p2821-2849d35537.html
   My bibliography  Save this article

Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review

Author

Listed:
  • Yuei-An Liou

    (Center for Space and Remote Sensing Research, National Central University, Jhong-Li, Taoyuan 32001, Taiwan)

  • Sanjib Kumar Kar

    (Center for Space and Remote Sensing Research, National Central University, Jhong-Li, Taoyuan 32001, Taiwan)

Abstract

With the advent of new satellite technology, the radiative energy exchanges between Sun, Earth, and space may now be quantified accurately. Nevertheless, much less is known about the magnitude of the energy flows within the climate system and at the Earth’s surface, which cannot be directly measured by satellites. This review surveys the basic theories, observational methods, and different surface energy balance algorithms for estimating evapotranspiration (ET) from landscapes and regions with remotely sensed surface temperatures, and highlights uncertainties and limitations associated with those estimation methods. Although some of these algorithms were built up for specific land covers like irrigation areas only, methods developed for other disciplines like hydrology and meteorology, are also reviewed, where continuous estimates in space and in time are needed. Temporal and spatial scaling issues associated with the use of thermal remote sensing for estimating evapotranspiration are also discussed. A review of these different satellite based remote sensing approaches is presented. The main physical bases and assumptions of these algorithms are also discussed. Some results are shown for the estimation of evapotranspiration on a rice paddy of Chiayi Plain in Taiwan using remote sensing data.

Suggested Citation

  • Yuei-An Liou & Sanjib Kumar Kar, 2014. "Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review," Energies, MDPI, vol. 7(5), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:2821-2849:d:35537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/5/2821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/5/2821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Consoli, Simona & D'Urso, Guido & Toscano, Attilio, 2006. "Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy," Agricultural Water Management, Elsevier, vol. 81(3), pages 295-314, March.
    2. de Azevedo, Pedro V. & da Silva, Bernardo B. & da Silva, Vicente P. R., 2003. "Water requirements of irrigated mango orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 58(3), pages 241-254, February.
    3. Villalobos, F. J. & Testi, L. & Rizzalli, R. & Orgaz, F., 2004. "Evapotranspiration and crop coefficients of irrigated garlic (Allium sativum L.) in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 64(3), pages 233-249, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    2. Allam, Mona & Mhawej, Mario & Meng, Qingyan & Faour, Ghaleb & Abunnasr, Yaser & Fadel, Ali & Xinli, Hu, 2021. "Monthly 10-m evapotranspiration rates retrieved by SEBALI with Sentinel-2 and MODIS LST data," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Liaqat, Umar Waqas & Awan, Usman Khalid & McCabe, Matthew Francis & Choi, Minha, 2016. "A geo-informatics approach for estimating water resources management components and their interrelationships," Agricultural Water Management, Elsevier, vol. 178(C), pages 89-105.
    4. Wagle, Pradeep & Gowda, Prasanna H. & Northup, Brian K., 2019. "Dynamics of evapotranspiration over a non-irrigated alfalfa field in the Southern Great Plains of the United States," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Mohamad M. Awad, 2019. "Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    6. Mhawej, Mario & Caiserman, Arnaud & Nasrallah, Ali & Dawi, Ali & Bachour, Roula & Faour, Ghaleb, 2020. "Automated evapotranspiration retrieval model with missing soil-related datasets: The proposal of SEBALI," Agricultural Water Management, Elsevier, vol. 229(C).
    7. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    8. Xue, Jingyuan & Fulton, Allan & Kisekka, Isaya, 2021. "Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards," Agricultural Water Management, Elsevier, vol. 256(C).
    9. George P. Petropoulos & Prashant K. Srivastava & Maria Piles & Simon Pearson, 2018. "Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management," Sustainability, MDPI, vol. 10(1), pages 1-20, January.
    10. Muhammad Arfan, 2022. "Mapping Impact of Farmer’s Organisation on the Equity of Water and Land Productivity: Evidence from Pakistan (Article)," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 61(2), pages 275-294.
    11. Mhawej, Mario & Elias, Georgie & Nasrallah, Ali & Faour, Ghaleb, 2020. "Dynamic calibration for better SEBALI ET estimations: Validations and recommendations," Agricultural Water Management, Elsevier, vol. 230(C).
    12. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    13. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    14. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    15. Elnmer, Ayat & Khadr, Mosaad & Kanae, Shinjiro & Tawfik, Ahmed, 2019. "Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta," Agricultural Water Management, Elsevier, vol. 213(C), pages 682-692.
    16. Nadeem Ul Haque & Faheem Jehangir Khan (ed.), 2022. "RASTA Local Research, Local Solutions: Political Economy Of Development Reform, Volume VI," PIDE Books, Pakistan Institute of Development Economics, number 2022:6, December.
    17. Yao, Yuxia & Liao, Xingliang & Xiao, Junlan & He, Qiulan & Shi, Weiyu, 2023. "The sensitivity of maize evapotranspiration to vapor pressure deficit and soil moisture with lagged effects under extreme drought in Southwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Mercedeh Taheri & Abdolmajid Mohammadian & Fatemeh Ganji & Mostafa Bigdeli & Mohsen Nasseri, 2022. "Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges," Energies, MDPI, vol. 15(4), pages 1-57, February.
    19. Walker, Elisabet & García, Gabriel A. & Venturini, Virginia & Carrasco, Aylen, 2019. "Regional evapotranspiration estimates using the relative soil moisture ratio derived from SMAP products," Agricultural Water Management, Elsevier, vol. 216(C), pages 254-263.
    20. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Wenzhi & Chang, Xuexiang & Chang, Xueli & Zhang, Dengrong & Liu, Bing & Du, Jun & Lin, Pengfei, 2018. "Estimating water consumption based on meta-analysis and MODIS data for an oasis region in northwestern China," Agricultural Water Management, Elsevier, vol. 208(C), pages 478-489.
    2. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    3. Yoo, Seung-Hwan & Choi, Jin-Yong & Jang, Min-Won, 2008. "Estimation of design water requirement using FAO Penman-Monteith and optimal probability distribution function in South Korea," Agricultural Water Management, Elsevier, vol. 95(7), pages 845-853, July.
    4. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    5. Spreer, W. & Nagle, M. & Neidhart, S. & Carle, R. & Ongprasert, S. & Muller, J., 2007. "Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. `Chok Anan')," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 173-180, March.
    6. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    7. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Consoli, S. & Vanella, D., 2014. "Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model," Agricultural Water Management, Elsevier, vol. 143(C), pages 71-81.
    9. Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).
    10. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    11. Campoy, Jaime & Campos, Isidro & Plaza, Carmen & Calera, María & Jiménez, Nuria & Bodas, Vicente & Calera, Alfonso, 2019. "Water use efficiency and light use efficiency in garlic using a remote sensing-based approach," Agricultural Water Management, Elsevier, vol. 219(C), pages 40-48.
    12. Spreer, Wolfram & Ongprasert, Somchai & Hegele, Martin & Wnsche, Jens N. & Mller, Joachim, 2009. "Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 574-584, April.
    13. de Azevedo, Pedro V. & de Souza, Cleber B. & da Silva, Bernardo B. & da Silva, Vicente P.R., 2007. "Water requirements of pineapple crop grown in a tropical environment, Brazil," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 201-208, March.
    14. Munitz, Sarel & Schwartz, Amnon & Netzer, Yishai, 2019. "Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv. 'Cabernet Sauvignon' vineyard," Agricultural Water Management, Elsevier, vol. 219(C), pages 86-94.
    15. Consoli, S. & Licciardello, F. & Vanella, D. & Pasotti, L. & Villani, G. & Tomei, F., 2016. "Testing the water balance model criteria using TDR measurements, micrometeorological data and satellite-based information," Agricultural Water Management, Elsevier, vol. 170(C), pages 68-80.
    16. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    17. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    18. Azevedo, Pedro Vieira de & Soares, Jose Monteiro & Silva, Vicente de Paulo Rodrigues da & Silva, Bernardo Barbosa da & Nascimento, Tarcizio, 2008. "Evapotranspiration of "Superior" grapevines under intermittent irrigation," Agricultural Water Management, Elsevier, vol. 95(3), pages 301-308, March.
    19. Mateos, L. & González-Dugo, M.P. & Testi, L. & Villalobos, F.J., 2013. "Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation," Agricultural Water Management, Elsevier, vol. 125(C), pages 81-91.
    20. Fukuda, Shinji & Spreer, Wolfram & Yasunaga, Eriko & Yuge, Kozue & Sardsud, Vicha & Müller, Joachim, 2013. "Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 116(C), pages 142-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:2821-2849:d:35537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.