IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1604-d1365123.html
   My bibliography  Save this article

Navigating the Implementation of Tax Credits for Natural-Gas-Based Low-Carbon-Intensity Hydrogen Projects

Author

Listed:
  • Ning Lin

    (Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78712, USA)

  • Liying Xu

    (Paul Dickinson School of Business, Oklahoma Baptist University, Shawnee, OK 74804, USA)

Abstract

This paper delves into the critical role of tax credits, specifically Sections 45Q and 45V, in the financing and economic feasibility of low-carbon-intensity hydrogen projects, with a focus on natural-gas-based hydrogen production plants integrated with carbon capture and storage (CCS). This study covers the current clean energy landscape, underscoring the importance of low-carbon hydrogen as a key component in the transition to a sustainable energy future, and then explicates the mechanics of the 45Q and 45V tax credits, illustrating their direct impact on enhancing the economic attractiveness of such projects through a detailed net present value (NPV) model analysis. Our analysis reveals that the application of 45Q and 45V tax credits significantly reduces the levelized cost of hydrogen production, with scenarios indicating a reduction in cost ranging from USD 0.41/kg to USD 0.81/kg of hydrogen. Specifically, the 45Q tax credit demonstrates a slightly more advantageous impact on reducing costs compared to the 45V tax credit, underpinning the critical role of these fiscal measures in enhancing project returns and feasibility. Furthermore, this paper addresses the inherent limitations of utilizing tax credits, primarily the challenge posed by the mismatch between the scale of tax credits and the tax liability of the project developers. The concept and role of tax equity investments are discussed in response to this challenge. These findings contribute to the broader dialogue on the financing of sustainable energy projects, providing valuable insights for policymakers, investors, and developers in the hydrogen energy sector. By quantifying the economic benefits of tax credits and elucidating the role of tax equity investments, our research supports informed decision-making and strategic planning in the pursuit of a sustainable energy future.

Suggested Citation

  • Ning Lin & Liying Xu, 2024. "Navigating the Implementation of Tax Credits for Natural-Gas-Based Low-Carbon-Intensity Hydrogen Projects," Energies, MDPI, vol. 17(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1604-:d:1365123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Bo & Male, Frank & Duncan, Ian J., 2022. "Economic analysis of CCUS: Accelerated development for CO2 EOR and storage in residual oil zones under the context of 45Q tax credit," Applied Energy, Elsevier, vol. 321(C).
    2. Lei Yang & Shuning Wang & Zhihu Zhang & Kai Lin & Minggang Zheng, 2023. "Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenhua Xu & Lianwu Zhou & Shuiping Ma & Jianxun Qin & Xiaodi Huang & Bo Han & Longqing Yang & Yun Luo & Pengcheng Liu, 2023. "Study on CO 2 Huff-n-Puff Development Rule of Horizontal Wells in Heavy Oil Reservoir by Taking Liuguanzhuang Oilfield in Dagang as an Example," Energies, MDPI, vol. 16(11), pages 1-13, May.
    2. Wu, Qianhui & Ding, Lei & Zhao, Lun & Alhashboul, Almohannad A. & Almajid, Muhammad M. & Patil, Pramod & Zhao, Wenqi & Fan, Zifei, 2024. "CO2 soluble surfactants for carbon storage in carbonate saline aquifers with achievable injectivity: Implications from the continuous CO2 injection study," Energy, Elsevier, vol. 290(C).
    3. Hou, Lei & Elsworth, Derek & Zhang, Lei & Gong, Peibin & Liu, Honglei, 2024. "Recalibration of CO2 storage in shale: prospective and contingent storage resources, and capacity," Energy, Elsevier, vol. 290(C).
    4. Min Thura Mon & Roengchai Tansuchat & Woraphon Yamaka, 2024. "CCUS Technology and Carbon Emissions: Evidence from the United States," Energies, MDPI, vol. 17(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1604-:d:1365123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.