IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1181-d1349644.html
   My bibliography  Save this article

The Effect of Nozzle Configuration on Adsorption-Chiller Performance

Author

Listed:
  • Wojciech Kalawa

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

  • Karol Sztekler

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

  • Jakub Kozaczuk

    (JWA Polska, ul. Ks. I. J. Skorupki 11/1, 31-519 Krakow, Poland)

  • Łukasz Mika

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

  • Ewelina Radomska

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

  • Wojciech Nowak

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

  • Andrzej Gołdasz

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Broadly defined climate protection is a powerful incentive in the search for environmentally friendly refrigeration technologies. Adsorption chillers are considered to be one such technology; however, their main disadvantages include a low cooling capacity, a low energy efficiency ratio (EER), and cyclic operation. Thus, a great deal of effort is being put into improving adsorption-chiller performance. In this paper, the influence of the spray angle, the number of nozzles, and the water flow rate through the nozzles on adsorption-chiller performance was investigated. Adsorption-chiller performance was investigated mainly in terms of the cooling capacity (CC), the energy efficiency ratio (EER), and the specific cooling power (SCP). The results indicated that the chiller’s cooling capacity increased from about 210 W to 316 W and that the EER increased from 0.110 to 0.167 when the spray angle of the nozzles was increased from 90° to 120°. It was also reported that increasing the flow rate of water through the nozzles did not improve the average cooling capacity or the other performance parameters but resulted in more stable operation of the chiller. Additionally, using six nozzles instead of three improved the average cooling capacity and EER tenfold.

Suggested Citation

  • Wojciech Kalawa & Karol Sztekler & Jakub Kozaczuk & Łukasz Mika & Ewelina Radomska & Wojciech Nowak & Andrzej Gołdasz, 2024. "The Effect of Nozzle Configuration on Adsorption-Chiller Performance," Energies, MDPI, vol. 17(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1181-:d:1349644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tianshi Zhang & Ziming Mo & Xiaoyu Xu & Xiaoyan Liu & Haopeng Chen & Zhiwu Han & Yuying Yan & Yingai Jin, 2022. "Advanced Study of Spray Cooling: From Theories to Applications," Energies, MDPI, vol. 15(23), pages 1-40, December.
    2. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    2. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    3. Karol Sztekler & Łukasz Mika, 2021. "Increasing the Performance of an Adsorption Chiller Operating in the Water Desalination Mode," Energies, MDPI, vol. 14(22), pages 1-19, November.
    4. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    5. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    6. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2017. "Performance evaluation of a solar-driven adsorption desalination-cooling system," Energy, Elsevier, vol. 128(C), pages 196-207.
    7. Wang, Yunfeng & Li, Ming & Ji, Xu & Yu, Qiongfen & Li, Guoliang & Ma, Xun, 2018. "Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system," Applied Energy, Elsevier, vol. 224(C), pages 417-425.
    8. Farkad A. Lattieff & Mohammed A. Atiya & Jasim M. Mahdi & Hasan Sh. Majdi & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Performance Analysis of a Solar Cooling System with Equal and Unequal Adsorption/Desorption Operating Time," Energies, MDPI, vol. 14(20), pages 1-16, October.
    9. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I – Modeling and experimental validation," Energy, Elsevier, vol. 116(P1), pages 526-538.
    10. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    11. Asfahan, Hafiz M. & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed A. & Shahzad, Muhammad W. & Worek, William, 2022. "Recent development in adsorption desalination: A state of the art review," Applied Energy, Elsevier, vol. 328(C).
    12. Yunus Tansu Aksoy & Hendrik Cornelissen & Pinar Eneren & Maria Rosaria Vetrano, 2023. "Spray Cooling Investigation of TiO 2 –Water Nanofluids on a Hot Surface," Energies, MDPI, vol. 16(7), pages 1-14, March.
    13. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1181-:d:1349644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.