IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3004-d1107098.html
   My bibliography  Save this article

Experimental and CFD Investigation of Fuel Mixing in an Optical-Access Direct-Injection NG Engine and Correlation with Test Rig Combustion and Performance Data

Author

Listed:
  • Daniela Misul

    (Energy Department, Politecnico di Torino, 10129 Torino, Italy)

  • Mirko Baratta

    (Energy Department, Politecnico di Torino, 10129 Torino, Italy)

  • Jiajie Xu

    (Energy Department, Politecnico di Torino, 10129 Torino, Italy)

  • Alois Fuerhapter

    (AVL List GmbH, 8020 Graz, Austria)

  • Rene Heindl

    (AVL List GmbH, 8020 Graz, Austria)

Abstract

The present paper is the result of a cooperation between Politecnico di Torino and AVL List Gmbh within a recent collaborative research project funded by the EC. The research work was focused on the experimental and numerical characterization of mixture formation, combustion, and emissions in direct-injection NG engines, to draw useful indication for the design of innovative, high-performance engine concepts. As a matter of fact, direct-injection IC engines running on NG are believed to be a competitive transition solution towards a sustainable mobility scenario, given their maturity, technological readiness, and flexibility with respect to the fuel quality. Moreover, gaseous-fuel engines can further decrease their carbon footprint if blending of natural gas with hydrogen is considered. Provided that mixture formation represents a key aspect for the design of direct-injection engines, the activity presented in this paper is focused on the characterization of NG injection and on the mixing process, as well as the impact these latter hold on the combustion process as well as on engine-out emissions. The mixture formation process was analyzed by means of combined CFD and optical investigations. Furthermore, a full version of the engine was tested on a dynamic test rig, providing quantitative information on the engine performance and emission characteristics. The CFD results highlighted the correlation between the mixture homogeneity and the combustion stability and hinted at a relevant impact of the jet characteristics on the air charge tumble and turbulence characteristics.

Suggested Citation

  • Daniela Misul & Mirko Baratta & Jiajie Xu & Alois Fuerhapter & Rene Heindl, 2023. "Experimental and CFD Investigation of Fuel Mixing in an Optical-Access Direct-Injection NG Engine and Correlation with Test Rig Combustion and Performance Data," Energies, MDPI, vol. 16(7), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3004-:d:1107098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    2. Iren A. Makaryan & Igor V. Sedov & Eugene A. Salgansky & Artem V. Arutyunov & Vladimir S. Arutyunov, 2022. "A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities," Energies, MDPI, vol. 15(6), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela A. Misul & Alex Scopelliti & Mirko Baratta, 2024. "High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling," Energies, MDPI, vol. 17(7), pages 1-20, March.
    2. Ravi Velugula & Balasubramanian Thiruvallur loganathan & Lakshminarasimhan Varadhaiyengar & Ramesh Asvathanarayanan & Mayank Mittal, 2023. "An Analysis of Mechanical and Thermal Stresses, Temperature and Displacement within the Transparent Cylinder and Piston Top of a Small Direct-Injection Spark-Ignition Optical Engine," Energies, MDPI, vol. 16(21), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    2. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    3. Hazar, Hanbey & Gul, Hakan, 2016. "Modeling analysis of chrome carbide (Cr3C2) coating on parts of combustion chamber of a SI engine," Energy, Elsevier, vol. 115(P1), pages 76-87.
    4. Nikolas Schöne & Boris Heinz, 2023. "Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1," Energies, MDPI, vol. 16(4), pages 1-42, February.
    5. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    6. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    7. Han, Dong & Wang, Chunhai & Duan, Yaozong & Tian, Zhisong & Huang, Zhen, 2014. "An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system," Energy, Elsevier, vol. 75(C), pages 513-519.
    8. Mohammed El-Adawy & Morgan R. Heikal & A. Rashid A. Aziz & Ibrahim Khalil Adam & Mhadi A. Ismael & Mohammed E. Babiker & Masri B. Baharom & Firmansyah & Ezrann Zharif Zainal Abidin, 2018. "On the Application of Proper Orthogonal Decomposition (POD) for In-Cylinder Flow Analysis," Energies, MDPI, vol. 11(9), pages 1-22, August.
    9. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    10. Yang, Jie & Dong, Xue & Wu, Qiang & Xu, Min, 2019. "Effects of enhanced tumble ratios on the in-cylinder performance of a gasoline direct injection optical engine," Applied Energy, Elsevier, vol. 236(C), pages 137-146.
    11. Nikolas Schöne & Raluca Dumitrescu & Boris Heinz, 2023. "Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya," Energies, MDPI, vol. 16(7), pages 1-33, April.
    12. Wang, Du & Ji, Changwei & Wang, Shuofeng & Meng, Hao & Yang, Jinxin, 2019. "Chemical effects of CO2 dilution on CH4 and H2 spherical flame," Energy, Elsevier, vol. 185(C), pages 316-326.
    13. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    14. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    16. Bogarra, M. & Herreros, J.M. & Tsolakis, A. & York, A.P.E. & Millington, P.J., 2016. "Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming," Applied Energy, Elsevier, vol. 180(C), pages 245-255.
    17. Iren A. Makaryan & Eugene A. Salgansky & Vladimir S. Arutyunov & Igor V. Sedov, 2023. "Non-Catalytic Partial Oxidation of Hydrocarbon Gases to Syngas and Hydrogen: A Systematic Review," Energies, MDPI, vol. 16(6), pages 1-23, March.
    18. Ilya E. Gerasimov & Tatyana A. Bolshova & Ksenia N. Osipova & Artëm M. Dmitriev & Denis A. Knyazkov & Andrey G. Shmakov, 2023. "Flame Structure at Elevated Pressure Values and Reduced Reaction Mechanisms for the Combustion of CH 4 /H 2 Mixtures," Energies, MDPI, vol. 16(22), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3004-:d:1107098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.