IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1687-d1061521.html
   My bibliography  Save this article

Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics

Author

Listed:
  • Hasan Demir

    (Department of Chemical Engineering, Osmaniye Korkut Ata University, 80000 Osmaniye, Türkiye)

  • Hande Demir

    (Department of Food Engineering, Osmaniye Korkut Ata University, 80000 Osmaniye, Türkiye)

  • Biljana Lončar

    (Faculty of Technology Novi Sad, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia)

  • Lato Pezo

    (Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia)

  • Ivan Brandić

    (Faculty of Agriculture, University of Zagreb, Svetosimunska cesta 25, 10000 Zagreb, Croatia)

  • Neven Voća

    (Faculty of Agriculture, University of Zagreb, Svetosimunska cesta 25, 10000 Zagreb, Croatia)

  • Fatma Yilmaz

    (Graduate School of Natural and Applied Sciences, Osmaniye Korkut Ata University, 80000 Osmaniye, Türkiye)

Abstract

One of the essential factors for the selection of the drying process is energy consumption. This study intended to optimize the drying treatment of capers using convection (CD), refractive window (RWD), and vacuum drying (VD) combined with ultrasonic pretreatment by a comparative approach among artificial neural networks (ANN) and response surface methodology (RSM) focusing on the specific energy consumption (SEC). For this purpose, the effects of drying temperature (50, 60, 70 °C), ultrasonication time (0, 20, 40 min), and drying method (RWD, CD, VD) on the SEC value (MJ/g) were tested using a face-centered central composite design (FCCD). RSM ( R 2 : 0.938) determined the optimum drying-temperature–ultrasonication-time values that minimize SEC as; 50 °C-35.5 min, 70 °C-40 min and 70 °C-24 min for RWD, CD and VD, respectively. The conduct of the ANN model is evidenced by the correlation coefficient for training (0.976), testing (0.971) and validation (0.972), which shows the high suitability of the model for optimising specific energy consumption (SEC).

Suggested Citation

  • Hasan Demir & Hande Demir & Biljana Lončar & Lato Pezo & Ivan Brandić & Neven Voća & Fatma Yilmaz, 2023. "Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics," Energies, MDPI, vol. 16(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1687-:d:1061521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
    2. Cor-Jacques Kat & Pieter Schalk Els, 2012. "Validation metric based on relative error," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(5), pages 487-520, January.
    3. Kamil Roman & Jan Barwicki & Witold Rzodkiewicz & Mariusz Dawidowski, 2021. "Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process," Energies, MDPI, vol. 14(11), pages 1-11, June.
    4. Hany S. EL-Mesery & Abd El-Fatah Abomohra & Chan-Ung Kang & Ji-Kwang Cheon & Bikram Basak & Byong-Hun Jeon, 2019. "Evaluation of Infrared Radiation Combined with Hot Air Convection for Energy-Efficient Drying of Biomass," Energies, MDPI, vol. 12(14), pages 1-15, July.
    5. Eda Puntarić & Lato Pezo & Željka Zgorelec & Jerko Gunjača & Dajana Kučić Grgić & Neven Voća, 2022. "Prediction of the Production of Separated Municipal Solid Waste by Artificial Neural Networks in Croatia and the European Union," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    6. Wilmsmeier, Gordon & Sanchez, Ricardo J., 2009. "The relevance of international transport costs on food prices: Endogenous and exogenous effects," Research in Transportation Economics, Elsevier, vol. 25(1), pages 56-66.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Zhao, Qianyu & Xu, Hang & Wall, Ronald S & Stavropoulos, Spyridon, 2017. "Building a bridge between port and city: Improving the urban competitiveness of port cities," Journal of Transport Geography, Elsevier, vol. 59(C), pages 120-133.
    3. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    4. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    5. Pérez-Mesa, Juan Carlos & García-Barranco, M & Piedra-Muñoz, Laura & Galdeano-Gómez, Emilio, 2019. "Transport as a limiting factor for the growth of Spanish agri-food exports," MPRA Paper 119855, University Library of Munich, Germany.
    6. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    7. Mateusz Leszczyński & Kamil Roman, 2023. "Hot-Water Extraction (HWE) Method as Applied to Lignocellulosic Materials from Hemp Stalk," Energies, MDPI, vol. 16(12), pages 1-14, June.
    8. Efrén Díez-Jiménez & Alberto Vidal-Sánchez & Alberto Barragán-García & Miguel Fernández-Muñoz & Ricardo Mallol-Poyato, 2019. "Lightweight Equipment for the Fast Installation of Asphalt Roofing Based on Infrared Heaters," Energies, MDPI, vol. 12(22), pages 1-20, November.
    9. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
    10. Anubhav Pratap Singh & Ronit Mandal & Maryam Shojaei & Anika Singh & Przemysław Łukasz Kowalczewski & Marta Ligaj & Jarosław Pawlicz & Maciej Jarzębski, 2020. "Novel Drying Methods for Sustainable Upcycling of Brewers’ Spent Grains as a Plant Protein Source," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    11. Kamil Roman & Witold Rzodkiewicz & Marek Hryniewicz, 2023. "Analysis of Forest Biomass Wood Briquette Structure According to Different Tests of Density," Energies, MDPI, vol. 16(6), pages 1-14, March.
    12. Wilmsmeier Gordon & Sánchez Ricardo J., 2010. "Evolution of shipping networks," ZFW – Advances in Economic Geography, De Gruyter, vol. 54(1), pages 180-193, October.
    13. Alberto Barragán-García & Miguel Fernández-Muñoz & Efrén Díez-Jiménez, 2020. "Lightweight Equipment Using Multiple Torches for Fast Speed Asphalt Roofing," Energies, MDPI, vol. 13(9), pages 1-21, May.
    14. Mauricio Mesquita Moreira & Paolo Giordano & Antoni Estevadeordal & Tomás Serebrisky & Jordan Schwartz & Ricardo Sánchez & Aiga Stokenberga, 2010. "Nota de Discusión de Politícas: Cómo Reducir Las Brechas de Integración (Escenarios y Recomendaciones de Políticas para Promover la Infraestructura Física y Reducir los Costes del Comercio Intrarregio," IDB Publications (Working Papers) 9338, Inter-American Development Bank.
    15. Zhao, Fan & Han, Feng & Zhang, Shiwei & Tian, Hanrong & Yang, Yi & Sun, Kun, 2018. "Vacuum drying kinetics and energy consumption analysis of LiFePO4 battery powder," Energy, Elsevier, vol. 162(C), pages 669-681.
    16. Darvishi, Hosain & Azadbakht, Mohsen & Noralahi, Bashir, 2018. "Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation," Renewable Energy, Elsevier, vol. 120(C), pages 201-208.
    17. Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2022. "Novel Hybrid Statistical Learning Framework Coupled with Random Forest and Grasshopper Optimization Algorithm to Forecast Pesticide Use on Golf Courses," Agriculture, MDPI, vol. 12(7), pages 1-19, June.
    18. Iman Golpour & Mohammad Kaveh & Ana M. Blanco-Marigorta & José Daniel Marcos & Raquel P. F. Guiné & Reza Amiri Chayjan & Esmail Khalife & Hamed Karami, 2022. "Multi-Response Design Optimisation of a Combined Fluidised Bed-Infrared Dryer for Terebinth ( Pistacia atlantica L.) Fruit Drying Process Based on Energy and Exergy Assessments by Applying RSM-CCD Mod," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    19. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    20. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1687-:d:1061521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.