IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1464-d1055024.html
   My bibliography  Save this article

Wind Turbine Blade Waste Circularity Coupled with Urban Regeneration: A Conceptual Framework

Author

Listed:
  • Spyridoula Karavida

    (Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic)

  • Angeliki Peponi

    (Forest Research Centre and Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-17 Lisbon, Portugal
    Centre of Geographical Studies and Associate Laboratory TERRA, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal)

Abstract

With the vast majority of scientists agreeing that the only hope in mitigating the adverse effects of climate change is to drop our carbon emissions to net zero by 2050, the decarbonization of the electricity sector is an environmental emergency. Wind energy can be a leader in the energy transition to a carbon emission-free economy. However, the wind energy transition must be carefully implemented to mitigate the economic, environmental, and social consequences of this change. Blade waste from end-of-life wind turbines is the Achilles’ heel of this energy transition and the main impediment to its full acceptance. Aiming to support efficient blade waste management and therefore to ensure sustainable wind energy transition, we conduct a two-fold methodology. In the first part, we propose a novel conceptual framework of upcycling and downcycling end-of-life solutions in an urban regeneration setting. In the second part, we use the case study method to illustrate the aspects of our conceptual framework by analyzing real life case studies. This study suggests that end-of-life blades are used in the cement coprocessing of waste and in architectural projects under urban regeneration transformation processes, closing the material loop according to the circular economy and sustainability principles.

Suggested Citation

  • Spyridoula Karavida & Angeliki Peponi, 2023. "Wind Turbine Blade Waste Circularity Coupled with Urban Regeneration: A Conceptual Framework," Energies, MDPI, vol. 16(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1464-:d:1055024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia Della Spina, 2019. "Multidimensional Assessment for “Culture-Led” and “Community-Driven” Urban Regeneration as Driver for Trigger Economic Vitality in Urban Historic Centers," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    2. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    3. Marcin Cholewa & Farid Mammadov & Agnieszka Nowaczek, 2022. "The obstacles and challenges of transition towards a renewable and sustainable energy system in Azerbaijan and Poland," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(1), pages 155-169, March.
    4. Beauson, J. & Laurent, A. & Rudolph, D.P. & Pagh Jensen, J., 2022. "The complex end-of-life of wind turbine blades: A review of the European context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Guido Ferilli & Pier Luigi Sacco & Giorgio Tavano Blessi & Stefano Forbici, 2017. "Power to the people: when culture works as a social catalyst in urban regeneration processes (and when it does not)," European Planning Studies, Taylor & Francis Journals, vol. 25(2), pages 241-258, February.
    6. Ebbe Bagge Paulsen & Peter Enevoldsen, 2021. "A Multidisciplinary Review of Recycling Methods for End-of-Life Wind Turbine Blades," Energies, MDPI, vol. 14(14), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    2. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    3. Komerath, Narayanan M. & Deepak, Ravi, 2023. "A reversible mid-stratospheric architecture to reduce insolation," Applied Energy, Elsevier, vol. 348(C).
    4. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    5. Maria Cerreta & Gaia Daldanise & Ludovica La Rocca & Simona Panaro, 2021. "Triggering Active Communities for Cultural Creative Cities: The “Hack the City” Play ReCH Mission in the Salerno Historic Centre (Italy)," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    6. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    7. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Ogundiran Soumonni & Kalu Ojah, 2022. "Innovative and mission‐oriented financing of renewable energy in Sub‐Saharan Africa: A review and conceptual framework," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    9. Carmela Cucuzzella & Morteza Hazbei & Sherif Goubran, 2021. "Activating Data through Eco-Didactic Design in the Public Realm: Enabling Sustainable Development in Cities," Sustainability, MDPI, vol. 13(8), pages 1-37, April.
    10. Hon Chung Lau, 2022. "Decarbonizing Thailand’s Economy: A Proposal," Energies, MDPI, vol. 15(24), pages 1-31, December.
    11. Yi-De Liu, 2019. "Event and Sustainable Culture-Led Regeneration: Lessons from the 2008 European Capital of Culture, Liverpool," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    12. Francesca Ciampa, 2023. "A Creative Approach for the Architectural Technology: Using the ExtrArtis Model to Regenerate the Built Environment," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    13. Emma L. Delaney & Paul G. Leahy & Jennifer M. McKinley & T. Russell Gentry & Angela J. Nagle & Jeffrey Elberling & Lawrence C. Bank, 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    14. Héctor Fernández Rodríguez & Miguel Ángel Pardo, 2023. "A Study of the Relevant Parameters for Converting Water Supply to Small Towns in the Province of Alicante to Systems Powered by Photovoltaic Solar Panels," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    15. Wörman, Anders & Uvo, Cintia Bertacchi & Brandimarte, Luigia & Busse, Stefan & Crochemore, Louise & Lopez, Marc Girons & Hao, Shuang & Pechlivanidis, Ilias & Riml, Joakim, 2020. "Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe," Applied Energy, Elsevier, vol. 272(C).
    16. Telma Barrantes-Fernández & Esteban Cruz-Hidalgo & José Francisco Rangel-Preciado & Francisco Manuel Parejo-Moruno, 2023. "Decommodify the 2030 Agenda: Why and How to Finance What Is Not Profitable?," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    17. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
    18. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    19. Yihao Jiang & Zhaojin Chen & Pingjun Sun, 2022. "Urban Shrinkage and Urban Vitality Correlation Research in the Three Northeastern Provinces of China," IJERPH, MDPI, vol. 19(17), pages 1-22, August.
    20. Gilson Dranka, Géremi & Ferreira, Paula & Vaz, A. Ismael F., 2022. "Co-benefits between energy efficiency and demand-response on renewable-based energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1464-:d:1055024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.