IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1067-d1039794.html
   My bibliography  Save this article

Facilitating Investment in Photovoltaic Systems in Iran Considering Time-of-Use Feed-in-Tariff and Carbon Market

Author

Listed:
  • Asrin Seyedzahedi

    (Department of Science, Campus of Bijar, University of Kurdistan, Bijar 6651874871, Iran)

  • Salah Bahramara

    (Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj 6616935391, Iran)

Abstract

Photovoltaic (PV) systems are the leading solutions for reducing carbon dioxide (CO 2 ) emissions in Iran’s energy system. However, there are some challenges to investing in PV systems in Iran, such as the low energy market price and the high investment cost of PV systems. Although the flat feed-in tariff (FiT) is defined to help purchase energy from the PV systems, it is not attractive to investors. In this paper, a mathematical formulation is developed for the planning problem of the PV systems with battery energy storages (BESs) considering two incentive policies: (1) Designing time-of-use FiT to encourage the PV systems to sell energy to the grid at peak hours (2) Participating in the carbon trading energy market. The insolation in Iran is calculated regarding mathematical formulations which divide Iran into eight zones. The results of the base case show high payback periods for all zones. In the presence of the incentive policies, the payback period decreases considerably from 5.46 yrs. to 3.75 yrs. for the best zone. Also, the net present value increases more than 170 percent in some zones compared to the base case.

Suggested Citation

  • Asrin Seyedzahedi & Salah Bahramara, 2023. "Facilitating Investment in Photovoltaic Systems in Iran Considering Time-of-Use Feed-in-Tariff and Carbon Market," Energies, MDPI, vol. 16(3), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1067-:d:1039794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yirga Belay Muna & Cheng-Chien Kuo, 2022. "Feasibility and Techno-Economic Analysis of Electric Vehicle Charging of PV/Wind/Diesel/Battery Hybrid Energy System with Different Battery Technology," Energies, MDPI, vol. 15(12), pages 1-20, June.
    2. Jalil Heidary Dahooie & Ali Husseinzadeh Kashan & Zahra Shoaei Naeini & Amir Salar Vanaki & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2022. "A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran," Energies, MDPI, vol. 15(8), pages 1-20, April.
    3. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    4. Mulu Bayray Kahsay & Johan Lauwaert, 2022. "Excess Energy from PV-Battery System Installations: A Case of Rural Health Center in Tigray, Ethiopia," Energies, MDPI, vol. 15(12), pages 1-11, June.
    5. Tamal Chowdhury & Samiul Hasan & Hemal Chowdhury & Abul Hasnat & Ahmad Rashedi & M. R. M. Asyraf & Mohamad Zaki Hassan & Sadiq M. Sait, 2022. "Sizing of an Island Standalone Hybrid System Considering Economic and Environmental Parameters: A Case Study," Energies, MDPI, vol. 15(16), pages 1-22, August.
    6. Bae, Sangmu & Nam, Yujin, 2022. "Feasibility analysis for an integrated system using photovoltaic-thermal and ground source heat pump based on real-scale experiment," Renewable Energy, Elsevier, vol. 185(C), pages 1152-1166.
    7. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    8. Aili Amupolo & Sofia Nambundunga & Daniel S. P. Chowdhury & Gunnar Grün, 2022. "Techno-Economic Feasibility of Off-Grid Renewable Energy Electrification Schemes: A Case Study of an Informal Settlement in Namibia," Energies, MDPI, vol. 15(12), pages 1-32, June.
    9. Wilmer Ropero-Castaño & Nicolás Muñoz-Galeano & Eduardo F. Caicedo-Bravo & Pablo Maya-Duque & Jesús M. López-Lezama, 2022. "Sizing Assessment of Islanded Microgrids Considering Total Investment Cost and Tax Benefits in Colombia," Energies, MDPI, vol. 15(14), pages 1-24, July.
    10. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    2. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    3. Nima Mirzaei, 2022. "A Multicriteria Decision Framework for Solar Power Plant Location Selection Problem with Pythagorean Fuzzy Data: A Case Study on Green Energy in Turkey," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    4. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    5. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    6. Md. Arif Hossain & Ashik Ahmed & Shafiqur Rahman Tito & Razzaqul Ahshan & Taiyeb Hasan Sakib & Sarvar Hussain Nengroo, 2022. "Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications," Energies, MDPI, vol. 16(1), pages 1-19, December.
    7. Irina Picioroaga & Madalina Luca & Andrei Tudose & Dorian Sidea & Mircea Eremia & Constantin Bulac, 2023. "Resilience-Driven Optimal Sizing of Energy Storage Systems in Remote Microgrids," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    8. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    9. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    10. Jerome G. Gacu & Junrey D. Garcia & Eddie G. Fetalvero & Merian P. Catajay-Mani & Cris Edward F. Monjardin, 2023. "Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration," Energies, MDPI, vol. 16(18), pages 1-28, September.
    11. Andrius Tamošiūnas, 2023. "Selecting Rooftop Solar Photovoltaic Modules by Measuring Their Attractiveness by a Categorical-Based Evaluation Technique (MACBETH): The Case of Lithuania," Energies, MDPI, vol. 16(7), pages 1-22, March.
    12. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    13. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Saad M. Abdullah & Makbul A. Ramli, 2023. "Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation," Sustainability, MDPI, vol. 15(14), pages 1-38, July.
    14. Anna Manowska & Andrzej Nowrot, 2022. "Solar Farms as the Only Power Source for the Entire Country," Energies, MDPI, vol. 15(14), pages 1-15, July.
    15. Rebekka Besner & Kedar Mehta & Wilfried Zörner, 2023. "How to Enhance Energy Services in Informal Settlements? Qualitative Comparison of Renewable Energy Solutions," Energies, MDPI, vol. 16(12), pages 1-22, June.
    16. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    17. Chia-Nan Wang & Yu-Chi Chung & Fajar Dwi Wibowo & Thanh-Tuan Dang & Ngoc-Ai-Thy Nguyen, 2023. "Site Selection of Solar Power Plants Using Hybrid MCDM Models: A Case Study in Indonesia," Energies, MDPI, vol. 16(10), pages 1-24, May.
    18. Jane Rose Atwongyeire & Arkom Palamanit & Adul Bennui & Mohammad Shakeri & Kuaanan Techato & Shahid Ali, 2022. "Assessment of Suitable Areas for Smart Grid of Power Generated from Renewable Energy Resources in Western Uganda," Energies, MDPI, vol. 15(4), pages 1-31, February.
    19. Shin, Dong-Youn & Shin, Woo-Gyun & Hwang, Hye-Mi & Kang, Gi-Hwan, 2023. "Grid-type LED media façade with reflective walls for building-integrated photovoltaics with virtually no shading loss," Applied Energy, Elsevier, vol. 332(C).
    20. Imad Hassan & Ibrahim Alhamrouni & Nurul Hanis Azhan, 2023. "A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm," Energies, MDPI, vol. 16(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1067-:d:1039794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.