IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6187-d1225475.html
   My bibliography  Save this article

Temperature Control of a Chemical Reactor Based on Neuro-Fuzzy Tuned with a Metaheuristic Technique to Improve Biodiesel Production

Author

Listed:
  • Mario C. Maya-Rodriguez

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • Ignacio Carvajal-Mariscal

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • Raúl López-Muñoz

    (Group of Research and Innovation in Mechatronics (GRIM), Centro de Innovación y Desarrollo Tecnológico en Cómputo (CIDETEC), Instituto Politécnico Nacional, Mexico City 07700, Mexico)

  • Mario A. Lopez-Pacheco

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

  • René Tolentino-Eslava

    (Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico)

Abstract

This work deals with the problem of choosing a controller for the production of biodiesel from the transesterification process through temperature control of the chemical reactor, from the point of view of automatic control, by considering such aspects as the performance metrics based on the error and the energy used by the controller, as well as the evaluation of the control system before disturbances. In addition, an improvement method is proposed via a neuro-fuzzy controller tuned with a metaheuristic algorithm to increase the efficiency of the chemical reaction in the reactor. A clear improvement is shown in the minimization of the integral of time multiplied squared error criterion (ITAE) performance index with respect to the proposed method (8.1657 × 10 4 ) in relation to the PID controller (7.8770 × 10 7 ). Moreover, the integral of the total control variation (TVU) performance index is also shown to evaluate the power used by the neuro-fuzzy controller (25.7697), while the PID controller obtains an index of (32.0287); this metric is especially relevant because it is related to the functional requirements of the system since it quantifies the variations of the control signal.

Suggested Citation

  • Mario C. Maya-Rodriguez & Ignacio Carvajal-Mariscal & Raúl López-Muñoz & Mario A. Lopez-Pacheco & René Tolentino-Eslava, 2023. "Temperature Control of a Chemical Reactor Based on Neuro-Fuzzy Tuned with a Metaheuristic Technique to Improve Biodiesel Production," Energies, MDPI, vol. 16(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6187-:d:1225475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boly, Mohamed & Sanou, Aicha, 2022. "Biofuels and food security: evidence from Indonesia and Mexico," Energy Policy, Elsevier, vol. 163(C).
    2. Ahmed Aboelhassan & M. Abdelgeliel & Ezz Eldin Zakzouk & Michael Galea, 2020. "Design and Implementation of Model Predictive Control Based PID Controller for Industrial Applications," Energies, MDPI, vol. 13(24), pages 1-22, December.
    3. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    4. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Umer Farooq & Muhammad Ahmad Jamil & Zareena Kausar & Noor Us Sabah & Muhammad Faizan Shah & Hafiz Zia Ur Rehman & Atiq Ur Rehman, 2021. "Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review," Energies, MDPI, vol. 14(9), pages 1-20, April.
    5. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    2. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    3. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    4. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    5. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Food Security and Biofuels in Latin America and the Caribbean Region: A Data Panel Analysis on Eight Countries," Energies, MDPI, vol. 16(23), pages 1-16, November.
    6. Tariq Mahmood & Shahid Hassan & Abdullah Sheikh & Abdul Raheem & Ahad Hameed, 2022. "Experimental Investigations of Diesel Engine Performance Using Blends of Distilled Waste Cooking Oil Biodiesel with Diesel and Economic Feasibility of the Distilled Biodiesel," Energies, MDPI, vol. 15(24), pages 1-19, December.
    7. Youcef Sehili & Khaled Loubar & Lyes Tarabet & Mahfoudh Cerdoun & Clément Lacroix, 2023. "Development of Predictive Model for Hydrogen-Natural Gas/Diesel Dual Fuel Engine," Energies, MDPI, vol. 16(19), pages 1-19, October.
    8. Jeyaseelan, Thangaraja & El Samad, Tala & Rajkumar, Sundararajan & Chatterjee, Abhay & Al-Zaili, Jafar, 2023. "A techno-economic assessment of waste oil biodiesel blends for automotive applications in urban areas: Case of India," Energy, Elsevier, vol. 271(C).
    9. Wang, Binbin & Wang, Hechun & Duan, Baoyin & Yang, Chuanlei & Hu, Deng & Wang, Yinyan, 2023. "Effect of ammonia/hydrogen mixture ratio on engine combustion and emission performance at different inlet temperatures," Energy, Elsevier, vol. 272(C).
    10. Guannan Cui & Xinyu Bai & Pengfei Wang & Haitao Wang & Shiyu Wang & Liming Dong, 2022. "Mechanism of Response of Watershed Water Quality to Agriculture Land-Use Changes in a Typical Fuel Ethanol Raw Material Planting Area—A Case Study on Guangxi Province, China," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    11. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).
    12. Omar Aboelazayem & Mamdouh Gadalla & Basudeb Saha, 2022. "Comprehensive Optimisation of Biodiesel Production Conditions via Supercritical Methanolysis of Waste Cooking Oil," Energies, MDPI, vol. 15(10), pages 1-22, May.
    13. Mehmood Ali & Muhammad Shahid & Waseem Saeed & Shahab Imran & Md. Abul Kalam, 2023. "Design, Fabrication, and Operation of a 10 L Biodiesel Production Unit Powered by Conventional and Solar Energy Systems," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    14. Ming-Chien Hsiao & Wei-Ting Lin & Wei-Cheng Chiu & Shuhn-Shyurng Hou, 2021. "Two-Stage Biodiesel Synthesis from Used Cooking Oil with a High Acid Value via an Ultrasound-Assisted Method," Energies, MDPI, vol. 14(12), pages 1-14, June.
    15. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    16. Abdelhameed, Elsayed & Tashima, Hiroshi, 2023. "Experimental study on the effects of methane-hydrogen jet as direct injected fuel in marine diesel engine," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6187-:d:1225475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.