IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5781-d1209728.html
   My bibliography  Save this article

Reverse Water Gas Shift versus Carbon Dioxide Electro-Reduction: The Reaction Pathway Responsible for Carbon Monoxide Production in Solid Oxide Co-Electrolysis Cells

Author

Listed:
  • Anders S. Nielsen

    (Department of Mechanical and Materials Engineering, Queen’s University, 130 Stuart Street, Kingston, ON K7L 2V9, Canada
    Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

  • Brant A. Peppley

    (Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston, ON K7L 2N9, Canada)

  • Odne S. Burheim

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

Abstract

Solid oxide co-electrolysis cells can utilize renewable energy sources for the conversion of steam and carbon dioxide into valuable chemicals and feedstocks. An important challenge in the analysis of these devices is understanding the reaction pathway(s) that govern carbon monoxide generation. Studies in which co-electrolysis polarization lies between those of pure steam and pure carbon dioxide electrolysis suggest that carbon dioxide electro-reduction (CO 2 ER) and the reverse water gas shift (RWGS) reaction are both contributors to CO generation. However, experiments in which co-electrolysis polarization overlaps that of pure steam electrolysis propose that the RWGS reaction dominates CO production and CO 2 ER is negligible. Supported by dimensional analysis, thermodynamics, and reaction kinetics, this work elucidates the reasons for which the latter conclusion is infeasible, and provides evidence for why the observed overlap between co-electrolysis and pure steam electrolysis is a result of the slow kinetics of CO 2 ER in comparison to that of steam, with the RWGS reaction being inconsequential. For sufficiently thin cathode current collectors, we reveal that CO 2 ER is dominant over the RWGS reaction, while the rate of steam electro-reduction is much higher than that of carbon dioxide, which causes the co-electrolysis and pure steam electrolysis polarization curves to overlap. This is contrary to what has been proposed in previous experimental analyses. Ultimately, this work provides insight into how to design solid oxide co-electrolysis cells such that they can exploit a desired reaction pathway in order to improve their efficiency and product selectivity.

Suggested Citation

  • Anders S. Nielsen & Brant A. Peppley & Odne S. Burheim, 2023. "Reverse Water Gas Shift versus Carbon Dioxide Electro-Reduction: The Reaction Pathway Responsible for Carbon Monoxide Production in Solid Oxide Co-Electrolysis Cells," Energies, MDPI, vol. 16(15), pages 1-9, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5781-:d:1209728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nielsen, Anders S. & Peppley, Brant A. & Burheim, Odne S., 2023. "Controlling the contribution of transport mechanisms in solid oxide co-electrolysis cells to improve product selectivity and performance: A theoretical framework," Applied Energy, Elsevier, vol. 344(C).
    2. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    2. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    3. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    4. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    5. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    6. Yan Shao & Yongwei Li & Zaiguo Fu & Jingfa Li & Qunzhi Zhu, 2023. "Numerical Investigation on the Performance of IT-SOEC with Double-Layer Composite Electrode," Energies, MDPI, vol. 16(6), pages 1-20, March.
    7. Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
    8. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & He, Wei & Farrusseng, David & Ni, Meng, 2018. "Modeling of all porous solid oxide fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 105-113.
    9. Nielsen, Anders S. & Peppley, Brant A. & Burheim, Odne S., 2023. "Controlling the contribution of transport mechanisms in solid oxide co-electrolysis cells to improve product selectivity and performance: A theoretical framework," Applied Energy, Elsevier, vol. 344(C).
    10. Xu, Haoran & Chen, Bin & Tan, Peng & Xuan, Jin & Maroto-Valer, M. Mercedes & Farrusseng, David & Sun, Qiong & Ni, Meng, 2019. "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design," Applied Energy, Elsevier, vol. 235(C), pages 602-611.
    11. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi, 2017. "Numerical investigations to determine the optimal operating conditions for 1 kW-class flat-tubular solid oxide fuel cell stack," Energy, Elsevier, vol. 141(C), pages 673-691.
    12. Yang, Chao & Jing, Xiuhui & Miao, He & Wu, Yu & Shu, Chen & Wang, Jiatang & Zhang, Houcheng & Yu, Guojun & Yuan, Jinliang, 2020. "Analysis of effects of meso-scale reactions on multiphysics transport processes in rSOFC fueled with syngas," Energy, Elsevier, vol. 190(C).
    13. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    14. Luo, Yu & Wu, Xiao-yu & Shi, Yixiang & Ghoniem, Ahmed F. & Cai, Ningsheng, 2018. "Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage," Applied Energy, Elsevier, vol. 215(C), pages 371-383.
    15. Jianguo Zhao & Zihan Lin & Mingjue Zhou, 2022. "Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    16. Mahmood, Asif & Bano, Saira & Yu, Ji Haeng & Lee, Kew-Ho, 2015. "High-performance solid oxide electrolysis cell based on ScSZ/GDC (scandia-stabilized zirconia/gadolinium-doped ceria) bi-layered electrolyte and LSCF (lanthanum strontium cobalt ferrite) oxygen electr," Energy, Elsevier, vol. 90(P1), pages 344-350.
    17. Xu, Haoran & Chen, Bin & Liu, Jiang & Ni, Meng, 2016. "Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration," Applied Energy, Elsevier, vol. 178(C), pages 353-362.
    18. Luo, Yu & Shi, Yixiang & Zheng, Yi & Gang, Zhongxue & Cai, Ningsheng, 2017. "Mutual information for evaluating renewable power penetration impacts in a distributed generation system," Energy, Elsevier, vol. 141(C), pages 290-303.
    19. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    20. Luo, Yu & Liao, Shuting & Chen, Shuai & Fang, Huihuang & Zhong, Fulan & Lin, Li & Zhou, Chen & Chen, Chongqi & Cai, Guohui & Au, Chak-Tong & Jiang, Lilong, 2022. "Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5781-:d:1209728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.