IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3180-d803089.html
   My bibliography  Save this article

On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market

Author

Listed:
  • Alan Turnbull

    (Institute of Energy and Environment, Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
    These authors contributed equally to this work.)

  • Conor McKinnon

    (Institute of Energy and Environment, Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
    Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK
    These authors contributed equally to this work.)

  • James Carrol

    (Institute of Energy and Environment, Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Alasdair McDonald

    (Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK)

Abstract

Offshore wind turbine drive train technology is evolving as developers increase size, aim to maximise availability and adapt to changing electricity grid requirements. This work first of all explores offshore technology market trends observed in Europe, providing a comprehensive overview of installed and planned capacity, showing a clear shift from smaller high-speed geared machines to larger direct-drive machines. To examine the implications of this shift in technology on reliability, stop rates for direct-drive and gear-driven turbines are compared between 39 farms across Europe and South America. This showed several key similarities between configurations, with the electrical system contributing to largest amount of turbine downtime in either case. When considering overall downtime across all components, the direct-drive machine had the highest value, which could be mainly attributed to comparatively higher downtime associated with the electrical, generator and control systems. For this study, downtime related to the gearbox and generator of the gear-driven turbine was calculated at approximately half of that of the direct-drive generator downtime. Finally, from a perspective of both reliability and fault diagnostics at component level, it is important to understand the key similarities and differences that would allow lessons learned on older technology to be adapted and transferred to newer models. This work presents a framework for assessing diagnostic models published in the literature, more specifically whether a particular failure mode and required input data will transfer well between geared and direct-drive machines. Results from 35 models found in the literature shows that the most transferable diagnostic models relate to the hydraulic, pitch and yaw systems, while the least transferable models relate to the gearbox. Faults associated with the generator, shafts and bearings are failure mode specific, but generally require some level of modification to adapt features to available data.

Suggested Citation

  • Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3180-:d:803089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    2. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    3. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    4. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    5. Herbert, G.M. Joselin & Iniyan, S. & Goic, Ranko, 2010. "Performance, reliability and failure analysis of wind farm in a developing Country," Renewable Energy, Elsevier, vol. 35(12), pages 2739-2751.
    6. Reder, Maik & Yürüşen, Nurseda Y. & Melero, Julio J., 2018. "Data-driven learning framework for associating weather conditions and wind turbine failures," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 554-569.
    7. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    8. Mucchielli, P. & Bhowmik, B. & Ghosh, B. & Pakrashi, V., 2021. "Real-time accurate detection of wind turbine downtime - An Irish perspective," Renewable Energy, Elsevier, vol. 179(C), pages 1969-1989.
    9. Kwok L. Tsui & Nan Chen & Qiang Zhou & Yizhen Hai & Wenbin Wang, 2015. "Prognostics and Health Management: A Review on Data Driven Approaches," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-17, May.
    10. Conor McKinnon & James Carroll & Alasdair McDonald & Sofia Koukoura & David Infield & Conaill Soraghan, 2020. "Comparison of New Anomaly Detection Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data," Energies, MDPI, vol. 13(19), pages 1-19, October.
    11. Ackermann, Thomas & Söder, Lennart, 2002. "An overview of wind energy-status 2002," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 67-127.
    12. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    13. Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Failure Modes, Effects and Criticality Analysis for Wind Turbines Considering Climatic Regions and Comparing Geared and Direct Drive Wind Turbines," Energies, MDPI, vol. 11(9), pages 1-18, September.
    14. Baroudi, Jamal A. & Dinavahi, Venkata & Knight, Andrew M., 2007. "A review of power converter topologies for wind generators," Renewable Energy, Elsevier, vol. 32(14), pages 2369-2385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barter, Garrett E. & Sethuraman, Latha & Bortolotti, Pietro & Keller, Jonathan & Torrey, David A., 2023. "Beyond 15 MW: A cost of energy perspective on the next generation of drivetrain technologies for offshore wind turbines," Applied Energy, Elsevier, vol. 344(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    2. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    3. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    4. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    5. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    6. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    7. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    8. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    9. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    10. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    11. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    12. Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
    13. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
    14. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    15. Meng Li & Shuangxin Wang, 2019. "Dynamic Fault Monitoring of Pitch System in Wind Turbines using Selective Ensemble Small-World Neural Networks," Energies, MDPI, vol. 12(17), pages 1-20, August.
    16. Yao, Qingtao & Zhu, Haowei & Xiang, Ling & Su, Hao & Hu, Aijun, 2023. "A novel composed method of cleaning anomy data for improving state prediction of wind turbine," Renewable Energy, Elsevier, vol. 204(C), pages 131-140.
    17. Samet Ozturk & Vasilis Fthenakis, 2020. "Predicting Frequency, Time-To-Repair and Costs of Wind Turbine Failures," Energies, MDPI, vol. 13(5), pages 1-25, March.
    18. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    19. Alan Turnbull & James Carroll & Alasdair McDonald, 2022. "A Comparative Analysis on the Variability of Temperature Thresholds through Time for Wind Turbine Generators Using Normal Behaviour Modelling," Energies, MDPI, vol. 15(14), pages 1-13, July.
    20. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3180-:d:803089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.