IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2417-d779367.html
   My bibliography  Save this article

Experimental Performance Analysis of Wi-SUN Channel Modelling Applied to Smart Grid Applications

Author

Listed:
  • Natthanan Tangsunantham

    (The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Rd. Bangsue, Bangkok 10800, Thailand)

  • Chaiyod Pirak

    (The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Rd. Bangsue, Bangkok 10800, Thailand)

Abstract

The grid operation and communication network are essential for smart grids (SG). Wi-SUN channel modelling is used to evaluate the performance of Wi-SUN smart grid networks, especially in the last-mile communication. In this article, the distribution approximation of the received signal strength for IEEE 802.15.4g Wi-SUN smart grid networks was investigated by using the Rician distribution curve fitting with the accuracy improvement by the biased approximation methodology. Specifically, the Rician distribution curve fitting was applied to the received signal strength indicator (RSSI) measurement data. With the biased approximation method, the Rician K-factor, a non-centrality parameter (r s ), and a scale parameter (σ) are optimized such that the lower value of the root-mean squared error (RMSE) is acheived. The environments for data collection are selected for representing the location of the data concentrator unit (DCU) and the smart meter installation in the residential area. In summary, the experimental results with the channel model parameters are expanded to the whole range of Wi-SUN’s frequency bands and data rates, including 433.92, 443, 448, 923, and 2440 MHz, which are essential for the successful data communication in multiple frequency bands. The biased distribution approximation models have improved the accuracy of the conventional model, by which the root mean-squared error (RMSE) is reduced in the percentage range of 0.47–3.827%. The proposed channel models could be applied to the Wi-SUN channel simulation, smart meter installation, and planning in smart grid networks.

Suggested Citation

  • Natthanan Tangsunantham & Chaiyod Pirak, 2022. "Experimental Performance Analysis of Wi-SUN Channel Modelling Applied to Smart Grid Applications," Energies, MDPI, vol. 15(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2417-:d:779367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Dong Sik Kim & Beom Jin Chung & Young Mo Chung, 2020. "Analysis of AMI Communication Methods in Various Field Environments," Energies, MDPI, vol. 13(19), pages 1-30, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natthanan Tangsunantham & Chaiyod Pirak, 2023. "Experimental Performance Analysis of Hardware-Based Link Quality Estimation Modelling Applied to Smart Grid Communications," Energies, MDPI, vol. 16(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    2. Shabana Urooj & Fadwa Alrowais & Yuvaraja Teekaraman & Hariprasath Manoharan & Ramya Kuppusamy, 2021. "IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities," Energies, MDPI, vol. 14(4), pages 1-16, February.
    3. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    4. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
    5. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    6. Ilja Nastjuk & Simon Trang & Elpiniki I. Papageorgiou, 2022. "Smart cities and smart governance models for future cities," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1917-1924, December.
    7. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    8. Aravindi Samarakkody & Dilanthi Amaratunga & Richard Haigh, 2023. "Technological Innovations for Enhancing Disaster Resilience in Smart Cities: A Comprehensive Urban Scholar’s Analysis," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    9. Guillermo Tapia-Tinoco & David Granados-Lieberman & David A. Rodriguez-Alejandro & Martin Valtierra-Rodriguez & Arturo Garcia-Perez, 2020. "A Robust Electric Spring Model and Modified Backward Forward Solution Method for Microgrids with Distributed Generation," Mathematics, MDPI, vol. 8(8), pages 1-32, August.
    10. Berghout, Tarek & Benbouzid, Mohamed, 2022. "EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural networks for cybersecurity in smart grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    12. Vidya Krishnan Mololoth & Saguna Saguna & Christer Åhlund, 2023. "Blockchain and Machine Learning for Future Smart Grids: A Review," Energies, MDPI, vol. 16(1), pages 1-39, January.
    13. Angel A. Juan & Majsa Ammouriova & Veronika Tsertsvadze & Celia Osorio & Noelia Fuster & Yusef Ahsini, 2023. "Promoting Energy Efficiency and Emissions Reduction in Urban Areas with Key Performance Indicators and Data Analytics," Energies, MDPI, vol. 16(20), pages 1-19, October.
    14. Ramsebner, J. & Haas, R. & Auer, H. & Ajanovic, A. & Gawlik, W. & Maier, C. & Nemec-Begluk, S. & Nacht, T. & Puchegger, M., 2021. "From single to multi-energy and hybrid grids: Historic growth and future vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Kristina Perić & Zdenko Šimić & Željko Jurić, 2022. "Characterization of Uncertainties in Smart City Planning: A Case Study of the Smart Metering Deployment," Energies, MDPI, vol. 15(6), pages 1-29, March.
    16. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    17. Dong Sik Kim & Wookyung Jung & Beom Jin Chung, 2021. "Analysis of the Electricity Supply Contracts for Medium-Voltage Apartments in the Republic of Korea," Energies, MDPI, vol. 14(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2417-:d:779367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.