IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2152-d771960.html
   My bibliography  Save this article

A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN

Author

Listed:
  • Hon Chung Lau

    (Low Carbon Energies, Houston, TX 77401, USA
    Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA)

  • Kai Zhang

    (Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Harsha Kumar Bokka

    (Department of Civil and Environmental Engineering, University of Singapore, Singapore 117576, Singapore)

  • Seeram Ramakrishna

    (Department of Mechanical Engineering, University of Singapore, Singapore 117575, Singapore)

Abstract

The ten nations of Southeast Asia, collectively known as ASEAN, emitted 1.65 Gtpa CO 2 in 2020, and are among the most vulnerable nations to climate change, which is partially caused by anthropogenic CO 2 emission. This paper analyzes the history of ASEAN energy consumption and CO 2 emission from both fossil and renewable energies in the last two decades. The results show that ASEAN’s renewable energies resources range from low to moderate, are unevenly distributed geographically, and contributed to only 20% of total primary energy consumption (TPEC) in 2015. The dominant forms of renewable energies are hydropower, solar photovoltaic, and bioenergy. However, both hydropower and bioenergy have substantial sustainability issues. Fossil energies depend heavily on coal and oil and contribute to 80% of TPEC. More importantly, renewable energies’ contribution to TPEC has been decreasing in the last two decades, despite the increasing installation capacity. This suggests that the current rate of the addition of renewable energy capacity is inadequate to allow ASEAN to reach net-zero by 2050. Therefore, fossil energies will continue to be an important part of ASEAN’s energy mix. More tools, such as carbon capture and storage (CCS) and hydrogen, will be needed for decarbonization. CCS will be needed to decarbonize ASEAN’s fossil power and industrial plants, while blue hydrogen will be needed to decarbonize hard-to-decarbonize industrial plants. Based on recent research into regional CO 2 source-sink mapping, this paper proposes six large-scale CCS projects in four countries, which can mitigate up to 300 Mtpa CO 2 . Furthermore, this paper identifies common pathways for ASEAN decarbonization and their policy implications.

Suggested Citation

  • Hon Chung Lau & Kai Zhang & Harsha Kumar Bokka & Seeram Ramakrishna, 2022. "A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN," Energies, MDPI, vol. 15(6), pages 1-30, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2152-:d:771960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hon Chung Lau & Seeram Ramakrishna & Kai Zhang & Mohamed Ziaudeen Shahul Hameed, 2021. "A Decarbonization Roadmap for Singapore and Its Energy Policy Implications," Energies, MDPI, vol. 14(20), pages 1-23, October.
    2. S. Kumar & P. Abdul Salam & Pujan Shrestha & Emmanuel Kofi Ackom, 2013. "An Assessment of Thailand’s Biofuel Development," Sustainability, MDPI, vol. 5(4), pages 1-21, April.
    3. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    4. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    5. Oh, Tick Hui, 2010. "Carbon capture and storage potential in coal-fired plant in Malaysia--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2697-2709, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hon Chung Lau, 2022. "Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    2. Dong, Weijian & Chen, Kanxiang & Liu, Xiaojun, 2023. "Role of regional trade agreements in enhancing investments in mineral resources projects in ASEAN," Resources Policy, Elsevier, vol. 85(PB).
    3. Chien, FengSheng & Vu, Trong Lam & Hien Phan, Thi Thu & Van Nguyen, Sang & Viet Anh, Nguyen Ho & Ngo, Thanh Quang, 2023. "Zero-carbon energy transition in ASEAN countries: The role of carbon finance, carbon taxes, and sustainable energy technologies," Renewable Energy, Elsevier, vol. 212(C), pages 561-569.
    4. Hon Chung Lau & Steve C. Tsai, 2022. "A Decarbonization Roadmap for Taiwan and Its Energy Policy Implications," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    5. Bokka, Harsha Kumar & Lau, Hon Chung, 2023. "Decarbonising Vietnam's power and industry sectors by carbon capture and storage," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hon Chung Lau, 2022. "Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    2. Hon Chung Lau & Steve C. Tsai, 2022. "A Decarbonization Roadmap for Taiwan and Its Energy Policy Implications," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    3. Rebitanim, Nur Zalikha & Wan Ab Karim Ghani, Wan Azlina & Rebitanim, Nur Akmal & Amran Mohd Salleh, Mohamad, 2013. "Potential applications of wastes from energy generation particularly biochar in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 694-702.
    4. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    5. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    6. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    7. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    8. An, Xuefei & Li, Tongxin & Chen, Jiaqi & Fu, Dong, 2023. "3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance," Energy, Elsevier, vol. 274(C).
    9. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    10. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    11. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    12. Luqman Razzaq & Muhammad Farooq & M. A. Mujtaba & Farooq Sher & Muhammad Farhan & Muhammad Tahir Hassan & Manzoore Elahi M. Soudagar & A. E. Atabani & M. A. Kalam & Muhammad Imran, 2020. "Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    13. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    14. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    15. Muhammad Mutasim Billah Tufail & Maawra Salam & Muhammad Shakeel & Ali Gohar, 2022. "Diversified Sustainable Resource Availability by Optimizing Economic Environmental and Supply Risk factors in Malaysia s Power Generation Mix," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 507-516.
    16. Vatalis, Konstantinos I. & Laaksonen, Aatto & Charalampides, George & Benetis, Nikolas P., 2012. "Intermediate technologies towards low-carbon economy. The Greek zeolite CCS outlook into the EU commitments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3391-3400.
    17. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Sujung Heo & Joon Weon Choi, 2019. "Potential and Environmental Impacts of Liquid Biofuel from Agricultural Residues in Thailand," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    19. Rashidi, Nor Adilla & Yusup, Suzana & Hameed, Bassim H., 2013. "Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon," Energy, Elsevier, vol. 61(C), pages 440-446.
    20. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2152-:d:771960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.